FAST-OAD

Release unknown

unknown

Oct 12, 2021

CONTENTS

1 Contents 3
2 Indices and tables 211
Bibliography 213
Python Module Index 215

Index 219

FAST-OAD, Release unknown

For a quick overview of the way FAST-OAD works, please go here.

For a detailed description of the input files and the command line interface, check out the usage section.

If you prefer to work with Python notebooks, you may go directly to the section Using FAST-OAD through Python.
For a description of models used in FAST-OAD, you may see the model documentations.

If you want to add your own models, please check out How to add custom OpenMDAO modules to FAST-OAD.

Note: Since version 1.0, FAST-OAD aims at providing a stable core software to propose a safe base for development
of custom models.

Models in FAST-OAD are still a work in progress.

CONTENTS 1

FAST-OAD, Release unknown

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 License

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change all versions of a program—to make sure it remains free software for all
its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies
of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that
they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run

http://fsf.org/

FAST-OAD, Release unknown

modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed
this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains,
we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.
To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without
modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright
notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents
a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official

4 Chapter 1. Contents

FAST-OAD, Release unknown

standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part
of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used
to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, in-
cluding scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities but which are not
part of the work. For example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between those subprograms and other
parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair
use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running
those works, provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or modification of the

1.1. License 5

FAST-OAD, Release unknown

work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all
of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

¢) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this
License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by a written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source for all the software in

6 Chapter 1. Contents

FAST-OAD, Release unknown

the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a network server
at no charge.

¢) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place
at no further charge. You need not require recipients to copy the Corresponding Source along
with the object code. If the place to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be included in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed
or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless
of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of pos-
session and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how
the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to
install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

1.1. License 7

FAST-OAD, Release unknown

in accord with this section must be in a format that is publicly documented (and with an implementation available to
the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place additional permissions on
material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of
this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified ver-
sions of such material be marked in reasonable ways as different from the original version;
or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a
license document contains a further restriction but permits relicensing or conveying under this License, you may add
to a covered work material governed by the terms of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate
your rights under this License (including any patent licenses granted under the third paragraph of section 11).

8 Chapter 1. Contents

FAST-OAD, Release unknown

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-
to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License
grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to
do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are
not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation
of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work
also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the
Program or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by
some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims
that would be infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

1.1. License 9

FAST-OAD, Release unknown

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such
an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license
for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the
patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would
infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to all recipients of the covered work and
works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may otherwise be available to you under applicable patent
law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you
could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey the resulting work. The terms of this License will continue
to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

10 Chapter 1. Contents

FAST-OAD, Release unknown

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered version or of any later version
published by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

1.1. License 11

FAST-OAD, Release unknown

1.2 Contributors

 Christophe DAVID <christophe.david @onera.fr>
* Scott DELBECQ <scott.delbecq @isae-supaero.fr>
* Martin DELAVENNE <martin.delavenne @isae-supaero.fr>

1.3 How to cite us

Please cite this article when using FAST-OAD in your research works:

C. David, S. Delbecq, S. Defoort, P. Schmollgruber, E. Benard and V. Pommier-Budinger: “From FAST to FAST-
OAD: An open source framework for rapid Overall Aircraft Design”, IOP Conference Series: Materials Science and
Engineering, vol. 1024, n. 1, DOI: 10.1088/1757-899x/1024/1/012062

@article{David2021,

doi {10.1088/1757-899x/1024/1/012062},

url {https://doi.org/10.1088/1757-899x/1024/1/012062},

year = 2021,

month = {jan},

publisher = {{IOP} Publishing},

volume = {1024},

number = {1},

pages = {012062},

author = {Christophe David and Scott Delbecq and Sebastien Defoort and Peter.,
—Schmollgruber and Emmanuel Benard and Valerie Pommier-Budinger},

title = {From {FAST} to {FAST}-{OAD}: An open source framework for rapid Overall.
—Aircraft Design},

journal = {{IOP} Conference Series: Materials Science and Engineering}}

1.4 Changelog

1.4.1 Version 1.1.0

¢ Changes:

— Added new submodel feature to enable a more modular approach. (#379)

Implemented the submodel feature in the aerodynamic module. (#388)

Implemented the submodel feature in the geometry module. (#387)

Implemented the submodel feature in the weight module. (#385)

Added the possibility to list custom modules. (#369)

Updated high lift aerodynamics and rubber engine models. (#352)

Added custom modules tutorial notebook. (#317)

* Bug fixes:
— Fixed incompatible versions of jupyter-client. (#390)

— Fixed the naming and description of the virtual taper ratio used in the wing geometry. (#383)

12 Chapter 1. Contents

mailto:christophe.david@onera.fr
mailto:scott.delbecq@isae-supaero.fr
mailto:martin.delavenne@isae-supaero.fr

FAST-OAD, Release unknown

— Fixed some wrong file links and typos in CeRAS notebook. (#380)

— Fixed issues with variable descriptions in xml file. (#364)

1.4.2 Version 1.0.5

¢ Changes:

— Now using the new WhatsOpt feature that allows to generate XDSM files without being registered on
server. (#361)

— Optimization viewer does no allow anymore to modify output values. (#372)
¢ Bug fixes:
— Compatibility with OpenMDAO 3.10 (which becomes the minimal required version). (#375)

— Variable descriptions can now be read from comment of XML data files, which fixes the missing
descriptions in variable viewer. (#359)

— Performance model: the computed taxi-in distance was irrelevant. (#368)

1.4.3 Version 1.0.4

¢ Changes:

— Enum classes in FAST-OAD models are now extensible by using aenum instead of enum. (#345)
¢ Bug fixes:

— Incompatibility with ruamel.yaml 0.17.5 and above has been fixed. (#344)

— Computation of partial derivatives for OpenMDAO was incorrectly declared in some components.
MDA, or MDO with COBYLA solver, were not affected. (#347)

— Errors in custom modules are no more hidden. (#348)

1.4.4 Version 1.0.3

¢ Changes:

— Configuration files can now contain unknown sections (at root level) to allow these files to be used by
other tools. (#333)

* Bug fixes:

Importing, in a __init__.py, some classes that were registered as FAST-OAD modules could make that
the register process fails. (#331)

When generating an input file using a data source, the whole data source was copied instead of just
keeping the needed variables. (#332)

Instead of overwriting an existing input files, variables of previous file were kept. (#330)

A variable that was connected to an output could be incorrectly labelled as input when listing problem
variables. (#341)

Fixed broken links in Sphinx documentation, including docstrings. (#315)

1.4. Changelog 13

FAST-OAD, Release unknown

1.4.5 Version 1.0.2

* FAST-OAD now requires a lower version of ruamel.yaml. It should prevent Anaconda to try and fail to update
its “clone” of ruamel.yaml. (#308)

1.4.6 Version 1.0.1

* Bug fixes:

— Inajupyter notebook, each use of a filter in variable viewer caused the display of a new variable viewer.
(#301)

— Wrong warning message was displayed when an incorrect path was provided for module_folders in the
configuration file. (#303)

1.4.7 Version 1.0.0

* Core software:
— Changes:
% FAST-OAD configuration file is now in YAML format. (#277)
% Module declaration are now done using Python decorators directly on registered classes. (#259)
FAST-OAD now supports custom modules as plugins. (#266)

% Added “fastoad.loop.wing_position” module for computing wing position from target static
margin in MDA. (#268)

% NaN values in input data are now detected at computation start. (#273)
* Now api.generate_inputs() returns the path of generated file. (#254)

% fastoad list_systems is now fastoad list_modules and shows documentation for OpenMDAO
options. (#287)

% Connection of OpenMDAO variables can now be done in configuration file. (#263)
% More generic code for mass breakdown plots to ease usage for custom weight models. (#250)
% DataFile class has been added for convenient interaction with FAST-OAD data files. (#293)
% Moved some part of code to private API. What is still public will be kept and maintained. (#295)
— Bug fixes:
% FAST-OAD was crashing when mpidpy was installed. (#272)
% Output of fastoad list_variables can now be redirected in a file. (#284)
% Activation of time-step mission computation in tutorial notebook is now functional. (#285)
% Variable viewer toolbar now works correctly in JupyterLab. (#288)
* N2 diagrams caused a 404 error in notebooks since OpenMDAO 3.7. (#289)
* Models:
— Changes:
% A notebook has been added that shows how to compute CeRAS-01 aircraft. (#275)

% Unification of performance module. (#251)

14 Chapter 1. Contents

FAST-OAD, Release unknown

- Breguet computations are now defined using the mission input file.

- A computed mission can now be integrated or not to the sizing process.
* Better management of speed parameters in Atmosphere class. (#281)
More robust airfoil profile processing. (#256)

% Added tuner parameter in computation of compressibility. (#258)

1.4.8 Version 0.5.4-beta

* Bug fix: An infinite loop could occur if custom modules were declaring the same variable several times with
different units or default values.

1.4.9 Version 0.5.3-beta

* Added compatibility with OpenMDAO 3.4, which is now the minimum required version of OpenMDAO. (#231)
» Simplified call to VariableViewer. (#221)

* Bug fix: model for compressibility drag now takes into account sweep angle and thickness ratio. (#237)

* Bug fix: at installation, minimum version of Scipy is forced to 1.2. (#219)

* Bug fix: SpeedChangeSegment class now accepts Mach number as possible target. (#234)

* Bug fix: variable “data:weight:aircraft_empty:mass has now “kg” as unit. (#236)

1.4.10 Version 0.5.2-beta

* Added compatibility with OpenMDAO 3.3. (#210)
* Added computation time in log info. (#211)

* Fixed bug in XFOIL input file. (#208)

* Fixed bug in copy_resource_folder(). (#212)

1.4.11 Version 0.5.1-beta

* Now avoids apparition of numerous deprecation warnings from OpenMDAO.

1.4.12 Version 0.5.0-beta

* Added compatibility with OpenMDAO 3.2.
¢ Added the mission performance module (currently computes a fixed standard mission).

* Propulsion models are now declared in a specific way so that another module can do a direct call to the needed
propulsion model.

1.4. Changelog 15

data:weight:aircraft_empty:mass

FAST-OAD, Release unknown

1.4.13 Version 0.4.2-beta

* Prevents installation of OpenMDAO 3.2 and above for incompatibility reasons.

¢ In Breguet module, output values for climb and descent distances were 1000 times too large (computation was
correct, though).

1.4.14 Version 0.4.0-beta

Some changes in mass and performances components:
* The Breguet performance model can now be adjusted through input variables in the “settings” section.

* The mass-performance loop is now done through the “fastoad.loop.mtow” component.

1.4.15 Version 0.3.1-beta

» Adapted the FAST-OAD code to handle OpenMDAO version 3.1.1.

1.4.16 Version 0.3.0-beta

* In Jupyter notebooks, VariableViewer now has a column for input/output type.

* Changed base OAD process so that propulsion model can now be directly called by the performance module
instead of being a separate OpenMDAO component (which is still possible, though). It prepares the import of
FAST legacy mission-based performance model.

1.4.17 Version 0.2.2-beta

* Changed dependency requirement to have OpenMDAO version at most 3.1.0 (FAST-OAD is not yet compatible
with 3.1.1)

1.4.18 Version 0.2.1-beta

* Fixed compatibility with wop 1.9 for XDSM generation

1.4.19 Version 0.2.0b

¢ First beta release

1.4.20 Version 0.1.0a

* First alpha release

16 Chapter 1. Contents

FAST-OAD, Release unknown

1.5 General documentation

Here you will find the first things to know about FAST-OAD.

1.5.1 Installation procedure

Prerequisite:FAST-OAD needs at least Python 3.7.0.
It is recommended (but not required) to install FAST-OAD in a virtual environment (conda, venv...)
Once Python is installed, FAST-OAD can be installed using pip.

Note: If your network uses a proxy, you may have to do some settings for pip to work correctly

You can install the latest version with this command:

$ pip install --upgrade fast-oad

1.5.2 FAST-OAD overview

FAST-OAD is a framework for performing rapid Overall Aircraft Design.
It proposes multi-disciplinary analysis and optimisation by relying on the OpenMDAO framework.

FAST-OAD allows easy switching between models for a same discipline, and also adding/removing disciplines to match
the need of your study.

Currently, FAST-OAD is bundled with models for commercial transport aircraft of years 1990-2000. Other models
will come and you may create your own models and use them instead of bundled ones.

How it works

A FAST-OAD run wraps up an OpenMDAO problem, which is, in a nutshell, the assembly of components that each
have input and output variables. Of course, the outputs of some component can be the inputs of some other ones, so
that the whole system can be solved.

FAST-OAD allows to define the problem to solve (or to optimize) through a configuration file that makes easy to
add/remove/replace any component. By doing that, the input data of the problem can be very different from one
problem to the other, but FAST-OAD comes with facilities to build the needed input data files.

A FAST-OAD problem can be fully run from command line interface or from the Python API.

Usage of Python API, including pre-processing and post-processing utilities are currently provided through Python
notebooks.

Overview of FAST-OAD files

A typical run of FAST-OAD uses two types of user files:

1.5. General documentation 17

https://docs.conda.io/en/latest/
https://docs.python.org/3.7/library/venv.html
https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server
https://openmdao.org/

FAST-OAD, Release unknown

configuration file (.yml)

This file defines the OpenMDAO problem by defining :
* what components will be in the problem
* the files for input and output data
* the problem settings
* the definition of the optimization problem if needed

A detailed description of this file can be found Zere.

The input and output data files (.xml)

These files contain the information of the variables involved in the system model:

1. The input file contains the global inputs values required to run all the model. The user is free to modify the values
of the variables in order that these new values are considered during a model run.

2. The output file contains all the variables (inputs + outputs) values obtained after a model run.

The content of these files and the way variables are named and serialized is described here.

1.5.3 Usage

FAST-OAD uses a configuration file for defining your OAD problem. You can interact with this problem using com-
mand line or Python directly.

You may also use some lower-level features of FAST-OAD to interact with OpenMDAO systems. This part is addressed
in the API documentation.

Contents

* Usage
— FAST-OAD configuration file

% Custom module path

% Input and output files

* Problem driver

* Solvers

% Problem definition

* Optimization settings
- Design variables
- Objective function
- Constraints

— Using FAST-OAD through Command line

* How to generate a configuration file

18 Chapter 1. Contents

FAST-OAD, Release unknown

* How to get list of registered modules

*

How to get list of variables

*

How to generate an input file
* How to view the problem process
- N2 diagram
- XDSM
* How to run the problem
- Run Multi-Disciplinary Analysis

- Run Multi-Disciplinary Optimization

— Using FAST-OAD through Python

FAST-OAD configuration file

FAST-OAD configuration files are in YAML format. A quick tutorial for YAML (among many ones) is available here

title: Sample OAD Process

List of folder paths where user added custom registered OpenMDAO components
module_folders:

Input and output files
input_file: ./problem_inputs.xml
output_file: ./problem_outputs.xml

Definition of problem driver assuming the OpenMDAO convention "import openmdao.api as.

—om
driver: om.ScipyOptimizeDriver(tol=1e-2, optimizer='COBYLA')

Definition of OpenMDAO model

Although "model" is a mandatory name for the top level of the model, its
sub-components can be freely named by user

model:

Solvers are defined assuming the OpenMDAO convention "import openmdao.api as om"

nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=le-2)
linear_solver: om.DirectSolver()

Components can be put in sub-groups
subgroup:
A group can be set with its own solvers.

nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=le-2, iprint=0)
linear_solver: om.DirectSolver()

geometry:

(continues on next page)

1.5. General documentation 19

https://yaml.org
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started/

FAST-OAD, Release unknown

(continued from previous page)

An OpenMDAO component is identified by its "id"

id: fastoad.geometry.legacy
weight:

id: fastoad.weight.legacy
mtow:

id: fastoad.mass_performances.compute_MTOW
hg_tail_sizing:

id: fastoad.handling_qualities.tail_sizing
hq_static_margin:

id: fastoad.handling_gqualities.static_margin
wing_position:

id: fastoad.loop.wing_position
aerodynamics_highspeed:

id: fastoad.aerodynamics.highspeed.legacy
aerodynamics_lowspeed:

id: fastoad.aerodynamics.lowspeed.legacy
aerodynamics_takeoff:

id: fastoad.aerodynamics.takeoff.legacy
aerodynamics_landing:

id: fastoad.aerodynamics.landing.legacy

use_xfoil: false

performance:
id: fastoad.performances.mission
propulsion_id: fastoad.wrapper.propulsion.rubber_engine
mission_file_path: ::sizing_breguet
mission_file_path: ::sizing_mission
out_file: ./flight_points.csv
adjust_fuel: true
is_sizing: true
wing_area:

id: fastoad.loop.wing_area

optimization: # This section is needed only if optimization process is run
design_variables:
- name: data:geometry:wing:aspect_ratio

lower: 9.0
upper: 18.0
constraints:
- name: data:geometry:wing:span
upper: 60.0
objective:

- name: data:mission:sizing:needed_block_fuel
scaler: 1l.e-4

Now in details:

20 Chapter 1. Contents

FAST-OAD, Release unknown

Custom module path

module_folders:

Provides the path where user can have his custom OpenMDAO modules. See section How fo add custom OpenMDAO
modules to FAST-OAD.

Input and output files

input_file: ./problem_inputs.xml
output_file: ./problem_outputs.xml

Specifies the input and output files of the problem. They are defined in the configuration file and DO NOT APPEAR
in the command line interface.

Problem driver

driver: om.ScipyOptimizeDriver(tol=1e-2, optimizer='COBYLA')

This belongs the domain of the OpenMDAO framework and its utilization. This setting is needed for optimization
problems. It is defined as in Python when assuming the OpenMDAO convention import openmdao.api as om.

For more details, please see the OpenMDAO documentation on drivers.

Solvers

model :
nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1e-2)
linear_solver: om.DirectSolver()

This is the starting point for defining the model of the problem. The model is a group of components. If the model
involves cycles, which happens for instance when some outputs of A are inputs of B, and vice-versa, it is necessary to
specify solvers as done above.

For more details, please see the OpenMDAO documentation on nonlinear solvers and linear solvers.

Problem definition

Components can be put in sub-groups
subgroup:

A group can be set with its own solvers.

nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1le-2, iprint=0)
linear_solver: om.DirectSolver()

geometry:
An OpenMDAO component is identified by its "id"

(continues on next page)

1.5. General documentation 21

http://openmdao.org/twodocs/versions/latest/features/building_blocks/drivers/index.html
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/nonlinear/index.html
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/linear/index.html

FAST-OAD, Release unknown

(continued from previous page)

id: fastoad.geometry.legacy
weight:

id: fastoad.weight.legacy
mtow:

id: fastoad.mass_performances.compute_MTOW
hg_tail_sizing:

id: fastoad.handling_qualities.tail_sizing
hq_static_margin:

id: fastoad.handling_qualities.static_margin
wing_position:

id: fastoad.loop.wing_position
aerodynamics_highspeed:

id: fastoad.aerodynamics.highspeed.legacy
aerodynamics_lowspeed:

id: fastoad.aerodynamics.lowspeed.legacy
aerodynamics_takeoff:

id: fastoad.aerodynamics.takeoff.legacy
aerodynamics_landing:

id: fastoad.aerodynamics.landing.legacy

use_xfoil: false

performance:
id: fastoad.performances.mission
propulsion_id: fastoad.wrapper.propulsion.rubber_engine
mission_file_path: ::sizing_breguet
mission_file_path: ::sizing _mission
out_file: ./flight_points.csv
adjust_fuel: true
is_sizing: true
wing_area:

id: fastoad.loop.wing_area

Components of the model can be modules, or sub-groups. They are defined as a sub-section of model:. Sub-sections
and sub-components can be freely named by user.

A sub-group gathers several modules and can be set with its own solvers to resolve cycles it may contains.

Here above, a sub-group with geometric, weight, handling-qualities and aerodynamic modules is defined and internal
solvers are activated. Performance and wing area computation modules are set apart.

A module is defined by its id: key that refers to the module registered name, but additional keys can be used, depending
on the options of the module. The list of available options of a module is available through the 1ist_modules sub-
command (see How fo get list of registered modules).

Optimization settings

This settings are used only when using optimization (see Run Multi-Disciplinary Optimization). They are ignored when
doing analysis (see Run Multi-Disciplinary Analysis).

The section is identified by:

optimization:

22 Chapter 1. Contents

FAST-OAD, Release unknown

Design variables

design_var:
- name: data:geometry:wing:MAC:at25percent:x
lower: 16.0
upper: 18.0

Here are defined design variables (relevant only for optimization). Keys of this section are named after parameters of
the OpenMDAO System.add_design_var() method

Several design variables can be defined.

Also, see How to get list of variables.

Objective function

objective:
- name: data:mission:sizing:fuel

Here is defined the objective function (relevant only for optimization). Keys of this section are named after parameters
of the OpenMDAO System.add_objective() method

Only one objective variable can be defined.

Also, see How to get list of variables.

Constraints

constraint:
- name: data:handling_qualities:static_margin
lower: 0.05
upper: 0.1

Here are defined constraint variables (relevant only for optimization). Keys of this section are named after parameters
of the OpenMDAO System.add_constraint() method

Several constraint variables can be defined.

Also, see How to get list of variables.

Using FAST-OAD through Command line

FAST-OAD can be used through shell command line or Python. This section deals with the shell command line, but if
you prefer using Python, you can skip this part and go to Using FAST-OAD through Python.

The FAST-OAD command is fastoad. Inline help is available with:

$ fastoad -h

fastoad works through sub-commands. Each sub-command provides its own inline help using

$ fastoad <sub-command> -h

1.5. General documentation 23

http://openmdao.org/twodocs/versions/latest/features/core_features/adding_desvars_objs_consts/adding_desvars.html?highlight=add_design_var
http://openmdao.org/twodocs/versions/latest/features/core_features/adding_desvars_objs_consts/adding_objectives.html?highlight=add_objective
http://openmdao.org/twodocs/versions/latest/features/core_features/adding_desvars_objs_consts/adding_constraints.html?highlight=add_constraint

FAST-OAD, Release unknown

How to generate a configuration file

FAST-OAD can provide a ready-to use configuration file with:

$ fastoad gen_conf my_conf.yml

This generates the file my_conf.yml

How to get list of registered modules

If you want to change the list of components in the model in the configuration file, you need the list of available modules.

List of FAST-OAD modules can be obtained with:

$ fastoad list_modules

If you added custom modules in your configuration file my_conf.yml (see how to add custom OpenMDAO modules
to FAST-OAD), they can be listed along FAST-OAD modules with:

$ fastoad list_modules my_conf.yml

You may also use the --verbose option to get detailed information on each module, including the available options,
if any.

How to get list of variables

Once your problem is defined in my_conf.yml, you can get a list of the variables of your problem with:

$ fastoad list_variables my_conf.yml

How to generate an input file

The name of the input file is defined in your configuration file my_conf.yml. This input file can be generated with:

$ fastoad gen_inputs my_conf.yml

The generated file will be an XML file that contains needed inputs for your problem. Values will be the default values
from module definitions, which means several ones will be “nan”. Actual value must be filled before the process is run.

If you already have a file that contains these values, you can use it to populate your new input files with:

$ fastoad gen_inputs my_conf.yml my_ref values.xml

If you are using the configuration file provided by the gen_conf sub-command (see :ref” Generate conf file*), you may
download our CeRASO1_baseline.xml and use it as source for generating your input file.

24 Chapter 1. Contents

https://github.com/fast-aircraft-design/FAST-OAD/raw/v0.1a/src/fastoad/notebooks/tutorial/data/CeRAS01_baseline.xml

FAST-OAD, Release unknown

How to view the problem process

FAST-OAD proposes two graphical ways to look at the problem defined in configuration file. This is especially useful
to see how models and variables are connected.

N2 diagram

FAST-OAD can use OpenMDAQO to create a N2 diagram. It provides in-depth information about the whole process.

You can create a n2 .html file with:

$ fastoad n2 my_conf.yml

XDSM

Using WhatsOpt as web service, FAST-OAD can provide a XDSM.
XDSM offers a more synthetic view than N2 diagram.

As it uses a web service, you need an internet access for this command, but you do not need to be a registered user on
the WhatsOpt server.

You can create a xdsm.html file with:

$ fastoad xdsm my_conf.yml

Note: it may take a couple of minutes

Also, you may see WhatsOpt developer documentation to run your own server. In such case, you will address your
server by using the --server option:

$ fastoad xdsm my_conf.yml --server https://the/address/of/my/WhatsOpt/server

How to run the problem
Run Multi-Disciplinary Analysis

Once your problem is defined in my_conf.yml, you can simply run it with:

$ fastoad eval my_conf.yml

Note: this is equivalent to OpenMDAQO’s run_model()

1.5. General documentation 25

http://openmdao.org/twodocs/versions/latest/features/model_visualization/n2_basics.html
https://github.com/OneraHub/WhatsOpt
https://mdolab.engin.umich.edu/wiki/xdsm-overview
https://whatsopt.readthedocs.io/en/latest/install.html

FAST-OAD, Release unknown

Run Multi-Disciplinary Optimization

You can also run the defined optimization with:

$ fastoad optim my_conf.yml

Note: this is equivalent to OpenMDAQ’s run_driver()

Using FAST-OAD through Python

The command line interface can generate Jupyter notebooks that show how to use the high-level interface of FAST-
OAD.

To do so, type this command in your terminal:

$ fastoad notebooks

Then run the Jupyter server as indicated in the obtained message.

1.5.4 Problem variables

FAST-OAD process relies on OpenMDAO, and process variables are OpenMDAO variables.
For any component, variables are declared as inputs or outputs as described here.

FAST-OAD uses the promotion system of OpenMDAO, which means that all variables that are exchanged between
FAST-OAD registered systems' have a unique name and are available for the whole process.

The list of variable names and descriptions for a given problem can be obtained from command line (see How fo get
list of variables).

Variable naming

Variables are named with a path-like pattern where path separator is :, e.g.:

e data:geometry:wing:area

e data:weight:airframe: fuselage:mass

e data:weight:airframe: fuselage:CG:x
The first path element distributes variables among three categories:

» data: variables that define the aircraft and its behaviour. This is the main category

e settings: model settings. Generally coefficients for advanced users

* tuning: coefficients that allow to do some assumptions (e.g.: “what if wing mass could be reduced of 20%?”’)
The second path element tells about the nature of the variable (geometry, aerodynamics, weight, ...).

The other path elements depend of the variable. The number of path elements is not fixed.

1 see Register your system(s)

26 Chapter 1. Contents

https://openmdao.org/
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/declaring_variables.html
http://openmdao.org/twodocs/versions/latest/basic_guide/promote_vs_connect.html

FAST-OAD, Release unknown

Serialization

For writing input and output files, FAST-OAD relies on the path in the variable names.

For example, for the three variables above, the matching part in XML file will be:

<data>
<geometry>
<wing>
<area units="m**2">150.0</area>
</wing>
</geometry>
<weight>
<fuselage>
<mass units="kg">10000.0</mass>
<CG>
<x units="m">20.0</x>
</CG>
</fuselage>
</weight>
</data>

Note: Units are given as a string according to OpenMDAO units definitions

1.5.5 Mission module

Here you will find information about the performance module in FAST-OAD.

Mission module

Here you will find information about the mission definition files for the FAST-OAD performance module.

Mission file

A mission file describes precisely one or several missions that could be computed by the performance model fastoad.
performances.mission of FAST-OAD.

The file format of mission files is the YAML format. A quick tutorial for YAML (among many ones) is available here

mission description

Phase section
Route section

Mission section

1.5. General documentation 27

http://openmdao.org/twodocs/versions/latest/features/units.html
https://yaml.org
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started/

FAST-OAD, Release unknown

mission description

Table 1: Mission elements

Type | Parts Description

seg- | N/A The basic bricks that are provided by FAST-OAD.

ment

phase | segment(s) A free assembly of one or more segments.

route
zero or more phase(s) A route is a climb/cruise/descent sequence with a fixed range. The
one cruise segment range is achieved by adjusting the distance covered during the
zero or more phase(s) cruise part.

mis- | routes and/or phases

sion s . el
A mission is what is computed by fastoad.performances.mission.

Generally, it begins when engine starts and ends when engine
stops.

Phase section

This section, identified by the phases keyword, defines flight phases. A flight phase is defined as an assembly of one
or more flight segment(s).

Basically, a phase has a name, and a parts attribute that contains a list of segment definitions.
Nevertheless, it is also possible to set, at phase level, the parameters that are common to several segments of the phase.

The phase section only defines flight phases, but not their usage, that is defined in route and mission sections. Therefore,
the definition order of flight phases has no importance.

Example:
phases:
initial_climb: # Phase name
engine_setting: takeoff # oo
polar: data:aerodynamics:aircraft:takeoff # Common segment
thrust_rate: 1.0 # parameters
time_step: 0.2 # oo
parts: # Definition of segment list
- segment: altitude_change # 1st segment (climb)
target:
altitude:
value: 400.
unit: ft
equivalent_airspeed: constant
- segment: speed_change # 2nd segment (acceleration)
target:
equivalent_airspeed:
value: 250
unit: kn
- segment: altitude_change # 3rd segment (climb)

(continues on next page)

28 Chapter 1. Contents

FAST-OAD, Release unknown

(continued from previous page)

thrust_rate: 0.95 # phase thrust rate value is,

—overwritten
target:

altitude:
value: 1500.
unit: ft

equivalent_airspeed: constant

climb: # Phase name
Definition of the phase...

Route section

This section, identified by the routes keyword, defines flight routes. A flight route is defined as climb/cruise/descent
sequence with a fixed range. The range is achieved by adjusting the distance covered during the cruise part. Climb and
descent phases are computed normally.

A route is identified by its name and has 4 attributes:
* range: the distance to be covered by the whole route
e climb_parts: alist of items like phase : <phase_name>
* cruise_part: a segment definition, except that it does not need any target distance.
e descent_parts: alist of items like phase : <phase_name>

Example:

routes:
main_route:
range:
value: 3000.
unit: NM
climb_parts:
- phase: initial_climb
- phase: climb
cruise_part:
segment: cruise
engine_setting: cruise
polar: data:aerodynamics:aircraft:cruise
target:
altitude: optimal_flight_level
maximum_flight_level: 340
descent_parts:
- phase: descent
diversion:
range: distance
climb_parts:
- phase: diversion_climb
cruise_part:
segment: breguet
engine_setting: cruise
polar: data:aerodynamics:aircraft:cruise

(continues on next page)

1.5. General documentation 29

FAST-OAD, Release unknown

(continued from previous page)

descent_parts:
- phase: descent

Mission section

This is the main section. It allows to define one or several missions, that will be computed by the mission module.

A mission is identified by its name and has only the parts attribute that lists the phase and/or route names that compose
the mission, with optionally a last item that is the reserve (see below).

The mission name is used when configuring the mission module in the FAST-OAD configuration file. If there is only
one mission defined in the file, naming it in the configuration file is optional.

About mission start:

» Each mission begins by default by taxi-out and takeoff phases, but these phases are not defined in the mission
file. One reason for that is that the mass input for the mission is the TakeOff Weight, which is the aircraft weight
at the end of takeoff phase.

* A taxi-out phase is automatically computed at begin of the mission. To ignore this phase, simply put its duration
to 0. in the input data file.

* The takeoff data are simple inputs of the mission model. They have to be computed in a dedicated takeoff model
(available soon), or provided in the input data file.

About reserve:
The reserve keyword is typically designed to define fuel reserve as stated in EU-OPS 1.255.

It defines the amount of fuel that is expected to be still in tanks once the mission is complete. It takes as
reference one of the route that composes the mission (ref attribute). The reserve is defined as the amount
of fuel consumed during the referenced route, multiplied by the coefficient provided as the multiplier
attribute.

Example:

missions:
sizing:
parts:
- route: main_route
- route: diversion
- phase: holding
- phase: landing
- phase: taxi_in
- reserve:
ref: main_route
multiplier: 0.03
operational:
parts:
- route: main_route
- phase: landing
- phase: taxi_in

30 Chapter 1. Contents

FAST-OAD, Release unknown

Flight segments

Flight segments are the Python-implemented, base building blocks for the mission definition.
They can be used as parts in phase definition.

A segment simulation starts at the flight parameters (altitude, speed, mass...) reached at the end of the previous
simulated segment. The segment simulation ends when its target is reached (or if it cannot be reached).

Sections:

* Segment types
» Segment target

* Special segment parameters

Segment types

In the following, the description of each segment type links to the documentation of the Python implementation. All
parameters of the Python constructor can be set in the mission file (except for propulsion and reference_area that
are set within the mission module). Most of these parameters are scalars and can be set as described /iere. The segment
target is a special parameter, detailed in further section Special parameters are detailed in last section.

Available segments are:

e speed_change

e altitude_change
* cruise

e optimal_cruise

e holding

e taxi

speed_change

A speed_change segment simulates an acceleration or deceleration flight part, at constant altitude and thrust rate. It
ends when the target speed (mach, true_airspeed or equivalent_airspeed) is reached.

Python documentation: SpeedChangeSegment

Example:

segment: speed_change
polar: data:aerodynamics:aircraft:takeoff # High-lift devices are ON
engine_setting: takeoff

thrust_rate: 1.0 # Full throttle

target:
altitude: constant # Assumed by default
equivalent_airspeed: # Acceleration up to EAS = 250 knots

(continues on next page)

1.5. General documentation 31

FAST-OAD, Release unknown

(continued from previous page)

value: 250
unit: kn

altitude_change

An altitude_change segment simulates a climb or descent flight part at constant thrust rate. Typically, it ends when

the target altitude is reached.

But also, a target speed can be set, while keeping another speed constant (e.g. climbing up to Mach 0.8 while keeping

equivalent_airspeed constant).
Python documentation: AltitudeChangeSegment

Examples:

segment: altitude_change

polar: data:aerodynamics:aircraft:cruise
engine_setting: idle

thrust_rate: 0.15

target:
altitude:
value: 10000.
unit: ft

equivalent_airspeed: constant

High speed aerodynamic polar

Idle throttle
Descent down to 10000. feet at constant EAS

segment: altitude_change
polar: data:aerodynamics:aircraft:cruise
engine_setting: climb
thrust_rate: 0.93
target:
equivalent_airspeed: constant
mach: 0.78

H

High speed aerodynamic polar

Climb throttle
Climb up to Mach 0.78 at constant EAS

segment: altitude_change

polar: data:aerodynamics:aircraft:cruise
engine_setting: climb

thrust_rate: 0.93

target:
mach: constant
altitude:

value: optimal_flight_level

High speed aerodynamic polar

Climb throttle

Climb at constant Mach up to the flight
level that provides maximum 1ift/drag
at current mass.

32

Chapter 1. Contents

FAST-OAD, Release unknown

Ccruise

A cruise segment simulates a flight part at constant speed and altitude, and regulated thrust rate (drag is compensated).

Optionally, target altitude can be set to optimal_flight_level. In such case, cruise will be preceded by a climb
segment that will put the aircraft at the altitude that will minimize the fuel consumption for the whole segment (including
the prepending climb). This option is available because the altitude_change segment can reach an altitude that will
optimize the lift/drag ratio at current mass, but the obtained altitude will not guaranty an optimal fuel consumption for
the whole cruise.

It ends when the target ground distance is covered (including the distance covered during prepending climb, if any).
Python documentation: C1imbAndCruiseSegment

Examples:

segment: cruise
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: cruise
target:
altitude: constant # Not needed, because assumed by default
ground_distance: # Cruise for 2000 nautical miles
value: 2000
unit: NM

segment: cruise
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: cruise
target:
altitude: optimal_flight_level # Commands a prepending climb, id needed
ground_distance: # Cruise for 2000 nautical miles
value: 2000
unit: NM

optimal_cruise

An optimal_cruise segment simulates a cruise climb, i.e. a cruise where the aircraft climbs gradually to keep being
at altitude of maximum lift/drag ratio.

It assumed the segment actually starts at altitude of maximum lift/drag ratio, which can be achieved with an alti-
tude_change segment with optimal_altitude as target altitude.

The common way to optimize the fuel consumption for commercial aircraft is a step climb cruise. Such segment will be
implemented in the future.

Python documentation: OptimalCruiseSegment

segment: optimal_cruise
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: cruise
target:
ground_distance: # Cruise for 2000 nautical miles
value: 2000
unit: NM

1.5. General documentation 33

FAST-OAD, Release unknown

holding

A holding segment simulates a flight part at constant speed and altitude, and regulated thrust rate (drag is compen-
sated). It ends when the target time is covered.

Python documentation: HoldSegment

Example:
segment: holding
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
target:
altitude: constant # Not needed, because assumed by default
time:
value: 20 # 20 minutes holding
unit: min
taxi

A taxi segment simulates the mission parts between gate and takeoff or landing, at constant thrust rate. It ends when
the target time is covered.

Python documentation: TaxiSegment

Example:

segment: taxi
thrust_rate: 0.3
target:
time:
value: 300 # taxi for 300 seconds (5 minutes)

Segment target

The target of a flight segment is a set of parameters that drives the end of the segment simulation.

Possible target parameters are the available fields of F1ightPoint. The actually useful parameters depend on the
segment.

Each parameter can be set the usual way, generally with a numeric value or a variable name, but it can also be a string.
The most common string value is constant that tells the parameter value should be kept constant and equal to the start
value. In any case, please refer to the documentation of the flight segment.

Special segment parameters

Most of segment parameters must be set with a unique value, which can be done in several ways, as described here.

There are some special parameters that are detailed below.

e engine_setting

e polar

34 Chapter 1. Contents

FAST-OAD, Release unknown

engine_setting

Expected value for engine_setting are takeoff, climb, cruise or idle

This setting is used by the “rubber engine” propulsion model (see RubberEngine). It roughly links the “turbine inlet
temperature” (a.k.a. T4) to the flight conditions.

If another propulsion model is used, this parameter may become irrelevant, and then can be omitted.

polar

The aerodynamic polar defines the relation between lift and drag coefficients (respectively CL and CD). This parameter
is composed of two vectors of same size, one for CL, and one for CD.

The polar parameter has 2 sub-keys that are CL and CD.

A basic example would be:

segment: cruise

polar:
CL: [0.0, 0.5, 1.0]
CD: [0.01, 0.03, 0.12]

But generally, polar values will be obtained through variable names, because they will be computed during the process,
or provided in the input file. This should give:

segment: cruise

polar:
CL: data:aerodynamics:aircraft:cruise:CL
CD: data:aerodynamics:aircraft:cruise:CD

Additionally, a convenience feature is proposes, which assumes CL and CD are provided by variables with same names,
except one ends with :CL and the other one by :CD. In such case, providing only the common prefix is enough.

Therefore, the next example is equivalent to the previous one:

segment: cruise
polar: data:aerodynamics:aircraft:cruise

Setting values in mission file

Any parameter value in the mission file can be provided in several ways:

e hard-coded value and unit
e hard-coded value with no unit

* OpenMDAO variable

* Contextual OpenMDAO variable

1.5. General documentation 35

FAST-OAD, Release unknown

hard-coded value and unit

The standard way is to set the parameter as value, with or without unit.

Note: If no unit is provided while parameter needs one, SI units will be assumed.

Provided units have to match OpenMDAO convention.

Examples:
altitude:
value: 10.
unit: km
altitude:
value: 10000. # equivalent to previous one (10km), because SI units are assumed
mach:
value: 0.8

engine_setting:
value: takeoff # some parameters expect a string value

hard-coded value with no unit

When no unit is provided, the value can be set directly. As for hard-coded value and unit, if the concerned parameter
is not dimensionless, SI units will be assumed.

Example:

mach: 0.8 # no unit
altitude: 10000. # == 10 km
engine_setting: takeoff # string value

OpenMDAO variable

It is possible to provide a variable name instead of a hard-coded value. Then the value and unit will be set by some
FAST-OAD module, or by the input file.

Example:

altitude: data:dummy_category:some_altitude

Contextual OpenMDAO variable

It is also possible to provide only a suffix for the variable name. Then the complete variable name
will be decided by the hierarchy the defined parameter belongs to. The associated variable name will be
data:mission:<mission_name>:<route_name>:<phase_name>:<suffix>.

It is useful when defining a route or a phase that will be used in several missions (see Mission file).

Note:

e <route_name> and <phase_name> will be used only when applicable (see examples below).

36 Chapter 1. Contents

FAST-OAD, Release unknown

* A contextual variable can be defined in a segment, but the variable will still be “associated” only to the phase.

A basic contextual variable is identified by a single tilde (~). In such case, <suffix> is the parameter name.

A generic contextual variable is preceded by a tilde. In such case, <suffix> is the name provided as value (without
the tilde).

Example 1 : generic contextual variable in a route

routes:
route_A:
range: ~distance # "distance" will be the used variable name
parts:

missions:
mission_1:
parts:
- route: route_A
mission_2:
parts:
- route: route_A

route_A contains the parameter range where a contextual variable name is affected. route_A is used as a step by
bothmission_1 and mission_2.

Then the mission computation has among its inputs:
* data:mission:mission_l:route_A:distance

e data:mission:mission_2:route_A:distance

Example 2 : basic contextual variable in a flight phase

phases:
phase_a:
thrust_rate: ~ # "thrust_rate" will be the used variable name

routes:
route_A:
range:
parts:
- phase_a

missions:
mission_1:
parts:

(continues on next page)

1.5. General documentation 37

FAST-OAD, Release unknown

(continued from previous page)

- route: route_A
mission_2:
parts:

- phase: phase_a

phase_a contains the parameter thrust_rate where a contextual variable name is affected. phase_a is a used as a
step by route_A, that is used as a step by mission_1. phase_a is also used as a step directly by mission_2.

Then the mission computation has among its inputs:
e data:mission:mission_l:route_A:phase_a:thrust_rate

e data:mission:mission_2:phase_a:thrust_rate

Mission module
The FAST-OAD mission module allows to simulate missions and to estimate their fuel burn, which is an essential part
of the sizing process.
The module aims at versatility, by:
* providing a way to define missions from custom files
¢ linking mission inputs and outputs to the FAST-OAD data model

* linking or not a mission to the sizing process

Inputs and outputs of the module

The performance module, as any FAST-OAD module, is linked to the MDA process by the connection of its input
and output variables. But unlike other modules, the list of inputs and outputs is not fixed, and widely depends on the
mission definition.

The input variables are defined in the mission file, as described /Zere.

Most outputs variables are automatically decided by the structure of the mission. Distance, duration and fuel burn are
provided as outputs for each part of the mission.

Outputs for the whole mission:
e data:mission:<mission_name>:distance
e data:mission:<mission_name>:duration
e data:mission:<mission_name>: fuel

Outputs for each part of the mission (flight route or flight phase):
e data:mission:<mission_name>:<part_name>:distance
e data:mission:<mission_name>:<part_name>:duration
e data:mission:<mission_name>:<part_name>: fuel

Outputs for each flight phase of a route:

38 Chapter 1. Contents

FAST-OAD, Release unknown

e data:mission:<mission_name>:<route_name>:<phase_name>:distance
e data:mission:<mission_name>:<route_name>:<phase_name>:duration
e data:mission:<mission_name>:<route_name>:<phase_name>: fuel
Other mission-related variables are:
e data:mission:<mission_name>:TOW: TakeOff Weight. Input or output, depending on options below.
e data:mission:<mission_name>:needed_block_fuel: Burned fuel during mission. Output.

e data:mission:<mission_name>:block_fuel: Actual block fuel. Input or output, depending on options
below.

Usage in FAST-OAD configuration file

The mission module can be used with the identifier :code’ fastoad.performances.mission’.

The available parameters for this module are:

e propulsion_id

e mission_file_path

e out_file

* mission_name

* use_initializer_iteration
e adjust_fuel

e compute_TOW

e add_solver

* is_sizing

Detailed description of parameters

propulsion_id

* Mandatory

It is the identifier of a registered propulsion wrapper (see How fo add a custom propulsion model to FAST-
OAD).

FAST-OAD comes with a parametric propulsion model adapted to engine of the 1990s, with "fastoad.
wrapper.propulsion.rubber_engine" as identifier.

1.5. General documentation 39

FAST-OAD, Release unknown

mission_file_path

* Optional (Default = ": :sizing_mission")

It is the path to the file that defines the mission. As any file path in the configuration file, it can be absolute
or relative. If relative, the path of configuration file will be used as basis.

FAST-OAD comes with two embedded missions, usable with special values:

e "::sizing_mission": a time-step simulation of a classical commercial mission with diversion
and holding phases
e "::sizing_breguet": a very quick simulation based on Breguet formula, with rough assessment

of fuel consumption during climb, descent, diversion and holding phases.

out_file

» Optional
If provided, a CSV file will be written at provided path with all computed flight points.

If relative, the path of configuration file will be used as basis.

mission_name

* Mandatory if the used mission file defines several missions. Optional otherwise.

Sets the mission to be computed.

use_initializer_iteration

Optional (Default = true)

During first solver loop, a complete mission computation can fail or consume useless CPU-time. When
activated, this option ensures the first iteration is done using a simple, dummy, formula instead of the
specified mission.

Warning: Set this option to false if you do expect this model to be computed only once. Otherwise, the perfor-
mance computation will be done only by the initializer.

adjust_fuel

¢ Optional (Default = true)

If true, block fuel will be adjusted to fuel consumption during mission. If false, the input block fuel
will be used.

40 Chapter 1. Contents

FAST-OAD, Release unknown

compute_TOW

* Optional (Default = false)

* Not used (actually forced to true) if adjust_fuel is true.
If true, TakeOff Weight will be computed from mission block fuel and ZFW.
If false, block fuel will be computed from TOW and ZFW.

add_solver

* Optional (Default = false)
* Not used (actually forced to false) if compute_TOW is false.

Setting this option to False will deactivate the local solver of the component. Useful if a global solver is
used for the MDA problem.
is_sizing

* Optional (Default = false)

If true, TOW for the mission will be considered equal to MTOW and mission payload will be considered
equal to design payload (variable data:weight:aircraft:payload). Therefore, mission computation
will be linked to the sizing process.

1.5.6 Adding modules to FAST-OAD

Here you will find information about custom modules in FAST-OAD.

How to add custom OpenMDAO modules to FAST-OAD

With FAST-OAD, you can register any OpenMDAO system of your own so it can be used through the configuration
file.

It is therefore strongly advised to have at least a basic knowledge of OpenMDAO to develop a module for FAST-OAD.
To have your OpenMDAO system available as a FAST-OAD module, you should follow these steps:

* Create your OpenMDAO system

* Register your system(s)

* Modify the configuration file

1.5. General documentation 41

http://openmdao.org/twodocs/versions/latest

FAST-OAD, Release unknown

Create your OpenMDAO system

It can be a Group or a Component-like class (generally an ExplicitComponent).

You can create the Python file at the location of your choice. You will just have to provide later the folder path in
FAST-OAD configuration file (see Modify the configuration file).

Variable naming

You have to pay attention to the naming of your input and output variables. As FAST-OAD uses the promotion system
of OpenMDAO, which means that variables you want to link to the rest of the process must have the name that is given
in the global process.

Nevertheless, you can create new variables for your system:
* Qutputs of your system will be available in output file and will be usable as any other variable.

* Unconnected inputs will simply have to be in the input file of the process. They will be automatically included
in the input file generated by FAST-OAD (see How to generate an input file).

* And if you add more than one system to the FAST-OAD process, outputs created by one of your system can of
course be used as inputs by other systems.

Also keep in mind that the naming of your variable will decide of its location in the input and output files. Therefore, the
way you name your new variables should be consistent with FAST-OAD convention, as explained in Problem variables.

Defining options

You may use the OpenMDAO way for adding options to your system. The options you add will be accessible from the
FAST-OAD configuration file (see Problem definition).

When declaring an option, the usage of the desc field if strongly advised, as any description you provide will be printed
along with module information with the 1ist_modules sub-command (see How to get list of registered modules).

Definition of partial derivatives

Your OpenMDAO system is expected to provide partial derivatives for all its outputs in analytic or approximate way.

At the very least, for most Component classes, the setup () method of your class should contain:

self.declare_partials("*", "*", method='£fd")

or for a Group class:

self.approx_totals()

The two lines above are the most generic and the least CPU-efficient ways of declaring partial derivatives. For better
efficiency, see how to work with derivatives in OpenMDAO.

42 Chapter 1. Contents

http://openmdao.org/twodocs/versions/latest/features/core_features/grouping_components/index.html
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/index.html
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/explicitcomp.html
http://openmdao.org/twodocs/versions/latest/basic_guide/promote_vs_connect.html
http://openmdao.org/twodocs/versions/latest/basic_guide/promote_vs_connect.html
http://openmdao.org/twodocs/versions/latest/features/core_features/working_with_derivatives/index.html

FAST-OAD, Release unknown

About ImplicitComponent classes

In some cases, you may have to use ImplicitComponent classes.
Just remember, as told in this tutorial, that the loop that will allow to solve it needs usage of the NewtonSolver.

A good way to ensure it is to build a Group class that will solve the ImplicitComponent with NewtonSolver. This Group
should be the system you will register in FAST-OAD.

Checking validity domains

Generally, models are valid only when variable values are in given ranges.

OpenMDAO provides a way to specify lower and upper bounds of an output variable and to enforce them when using
a Newton solver by using backtracking line searches.

FAST-OAD proposes a way to set lower and upper bounds for input and output variables, but only for checking and
giving feedback of variables that would be out of bounds.

If you want your OpenMDAO class to do this checking, simply use the decorator ValidityDomainChecker:

@ValidityDomainChecker
class MyComponent (om.ExplicitComponent):
def setup(self):
self.add_input("length", 1., units="km")
self.add_input("time", 1., units="h")
self.add_output("speed", 1., units="km/h", lower=0., upper=130.)

The above code make that FAST-OAD will issue a warning if at the end of the computation, “speed” variable is not
between lower and upper bound.

But it is possible to set your own bounds outside of OpenMDAO by following this example:

@ValidityDomainChecker(

{

"length": (0.1, None), # Defines only a lower bound

"time": (0., 1.), # Defines lower and upper bounds

"speed": (None, 150.0), # Ignores original bounds and sets only upper bound
}

)
class MyComponent (om.ExplicitComponent):
def setup(self):

self.add_input("length", 1., units="km")

self.add_input("time", 1., units="h")

Bounds that are set here will still apply if backtracking line search is used,.
—but

will not be used for validity domain checking because it has been replaced.
—above

self.add_output('speed", 1., units="km/h", lower=0., upper=130.)

1.5. General documentation 43

http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/implicitcomp.html
http://openmdao.org/twodocs/versions/latest/advanced_guide/implicit_comps/defining_icomps.html
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/nonlinear/newton.html#nlnewton
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/backtracking/index.html

FAST-OAD, Release unknown

Register your system(s)

Once your OpenMDAO system is ready, you have to register it to make it known as a FAST-OAD module.
To do that, you just have to add the RegisterOpenMDAOSystem decorator to your OpenMDAO class like this:

import fastoad.api as oad
import openmdao.api as om

@oad.RegisterOpenMDAOSystem("my.custom.name")
class MyOMClass(om.ExplicitComponent):
[...]

Note: If you work with Jupyter notebook, remember that any change in your Python files will require the kernel to be
restarted.

Modify the configuration file

The folders that contain your Python files must be listed in module_folders in the FAST-OAD configuration file:

title: OAD Process with custom component

List of folder paths where user added custom registered OpenMDAO components
module_folders:

- /path/to/my/custom/module/folder

- /another/path/

[...]

Once this is done, (assuming your configuration file is named my_custom_conf. yml) your custom, registered, module
should appear in the list provided by the command line:

$ fastoad list_modules my_custom_conf.yml

Then your component can be used like any other using the id you have given.

Definition of OpenMDAO model
model:

[...]

my_custom_model:
id: "my.custom.name"

[...]

Note: FAST-OAD will inspect all sub-folders in a specified module folder, as long as they are Python packages, i.e.
if they contain a __init__.py file.

44 Chapter 1. Contents

FAST-OAD, Release unknown

How to add a custom propulsion model to FAST-OAD
Propulsion models have a specific status because they are directly called by the performance models, so the connection
is not done through OpenMDAO.

By following instructions in this page, you should ensure your propulsion model will run smoothly with the existing
performance models. You will also be able to access your engine parameters through FAST-OAD process.

The FlightPoint class

The Fl1ightPoint class is designed to store flight parameters for one flight point.
It is meant to be the class that performance modules will work with, and that will be exchanged with propulsion models.
FlightPoint class is meant for:

* storing all needed parameters that are needed for performance modelling, including propulsion parameters.

* easily exchanging data with pandas DataFrame.

* being extensible for new parameters.

Note: All parameters in FlightPoint instances are expected to be in SI units.

Available flight parameters

The documentation of F1ightPoint provides the list of available flight parameters, available as attributes. As Flight-
Point is a dataclass, this list is available through Python using:

>>> import fastoad.api as oad
>>> from dataclasses import fields

>>> [f.name for f in fields(oad.FlightPoint)]

Exchanges with pandas DataFrame

A pandas DataFrame can be generated from a list of FlightPoint instances:

>>> import pandas as pd
>>> import fastoad.api as oad

>>> fpl oad.FlightPoint (mass=70000., altitude=0.)
>>> fp2 = oad.FlightPoint(mass=60000., altitude=10000.)
>>> df = pd.DataFrame([fpl, £fp2])

And FlightPoint instances can be created from DataFrame rows:

Get one FlightPoint instance from a DataFrame row
>>> fplbis = oad.FlightPoint.create(df.iloc[0])

Get a list of FlightPoint instances from the whole DataFrame
>>> flight_points = oad.FlightPoint.create_list(df)

1.5. General documentation 45

FAST-OAD, Release unknown

Extensibility

FlightPoint class is bundled with several fields that are commonly used in trajectory assessment, but one might need
additional fields.

Python allows to add attributes to any instance at runtime, but for FlightPoint to run smoothly, especially when ex-
changing data with pandas, you have to work at class level. This can be done using add_field(), preferably outside
of any class or function:

Adds a float field with None as default value
>>> FlightPoint.add_field("ion_drive_power'™)

Adds a field and define its type and default value
>>> FlightPoint.add_field("warp", annotation_type=int, default_value=9)

Now these fields can be used at instantiation
>>> fp = FlightPoint(ion_drive_power=110.0, warp=12)

Removes a field, even an original one (useful only to avoid having it in outputs)
>>> FlightPoint.remove_field("sfc™)

The IPropulsion interface

When developing your propulsion model, to ensure that it will work smoothly with current performances models, you
have to do it in a class that implements the IPropulsion interface, meaning your class must have at least the 2 methods
compute_flight_points() and get_consumed_mass().

Computation of propulsion data

compute_flight_points() will modify the provided flight point(s) by adding propulsion-related parameters. A
conventional fuel engine will rely on parameters like mach, altitude and will provide parameters like sfc (Specific
Fuel Consumption).

Propulsion model inputs

For your model to work with current performance models, your model is expected to rely on known flight parameters,
i.e. the original parameters of F1ightPoint.

Note: Special attention has to be paid to the thrust parameters. Depending on the flight phase, the aircraft can fly
in manual mode, with an imposed thrust rate, or in regulated mode, where propulsion has to give an imposed thrust.
Your model has to provide these two modes, and to use them as intended.

The thrust_is_regulated parameter tells what mode is on. If it is True, the model has to rely on the thrust
parameter. If it False, the model has to rely on the thrust_rate parameter.

46 Chapter 1. Contents

FAST-OAD, Release unknown

Propulsion model outputs

If you work with the Breguet module, your model has to compute the sfc parameter.

But if you use the mission module, you have total freedom about the output of your model. If you want to use a
parameter that is not available, you can add it to the FlightPoint class as described above.

The only requirement is that you have to implement get_consumed_mass () accordingly for the mission module to
have a correct assessment of mass evolution.

Computation of consumed mass

The get_consumed_mass () simply provides the mass consumption over the provided time. It is meant to use the
parameters computed in compute_flight_points().

The OpenMDAO wrapper

Once your propulsion model is ready, you have to make a wrapper around it for:
* having the possibility to choose it in the FAST-OAD configuration file
* having its parameters available in FAST-OAD data files

Defining the wrapper

Your wrapper class has to implement the IOMPropulsionlirapper interface, meaning it should implement the 2
methods get_model () and setup().

get_model () has to provide an instance of your model. If the constructor of your propulsion model class needs
parameters, you may get them from inputs, that will be the inputs parameter that OpenMDAO will provide to the
performance module when calling compute () method.

Therefore, the performance module will have to define the inputs that your propulsion model needs in its setup method,
as required by OpenMDAO. To do this, the setup method ot the performance module calls the setup() of your
wrapper, that is expected to define the needed input variables.

For an example, please see the source code of OMRubberEnginelirapper.

Registering the wrapper

Registering is needed for being able to choose your propulsion wrapper in FAST-OAD configuration file. Due to
the specific status of propulsion models, the registering process is a bit different that the one for classic OpenMDAO
modules.

The registering is done using the RegisterPropulsion decorator:

import fastoad.api as oad

@oad.RegisterPropulsion("star.trek.propulsion™)
class WarpDriveWrapper (oad.IOMPropulsionWirapper) :

[...]

1.5. General documentation 47

FAST-OAD, Release unknown

Using the wrapper in the configuration file

As for other custom modules, the folder that contains your Python module(s) must be listed in the module_folders
of the configuration file.

The association of the propulsion model to the performance module is done with the propulsion_id keyword, as in
following example:

title: OAD Process with custom propulsion model

List of folder paths where user added custom registered OpenMDAO components
module_folders:
- /path/to/my/propulsion/wrapper/

[...]

Definition of OpenMDAO model
model:
[...]
performance:
id: fastoad.performances.mission
propulsion_id: star.trek.propulsion

How to document your variables

FAST-OAD can associate a description to each variable. Such description will be put as comment in datafiles, or
displayed along with other variable information, like in command line (see How to get list of variables).

The description of a variable can be defined in two ways:

* Defining variable description in your OpenMDAO component

* Defining variable description in dedicated files

Defining variable description in your OpenMDAO component

OpenMDAO natively allows to define the description of a variable when declaring it.

FAST-OAD will retrieve this information (the description has to be defined once, even if the variable is declared at
several locations).

Defining variable description in dedicated files

If you want to add description to your variables in a more centralized way, FAST-OAD will look for files named
variable_descriptions. txt that are dedicated to that.

The file content is expected to process one variable per line, containing the variable name and its description, separated
by | |, as in following example:

my:variable| |The description of my:variable, as long as needed, but on one line.
Comments are allowed
my:other:variable || Another description (surrounding spaces are ignored)

48 Chapter 1. Contents

https://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/declaring_variables.html?highlight=desc

FAST-OAD, Release unknown

FAST-OAD will search such files:
* in the root package of plugin modules (see How to add custom OpenMDAO modules to FAST-OAD as a plugin)
* in the root folder of module folders as declared in configuration file (see Modify the configuration file)
* in the same package as any class which is declared as FAST-OAD module (see Register your system(s))

In practice, here you can see what description files will be consider, depending on their location:

my_modules/
— __init__.py
— subpackagel
— __init__.py
—— model.py <- contains a class decorated with
RegisterOpenMDAOSystem
L— variable_descriptions.txt <- this file will be loaded
—— subpackage2
— __init__.py
— propulsion_model.py <- contains a class decorated with
RegisterOpenPropulsion
L— variable_descriptions.txt <- this file will be loaded
— util
— __init__.py
— utility_module.py <- no registering done here
L— variable_descriptions.txt <- this file will NOT be loaded
L— variable_descriptions.txt <- this file will be loaded because it is in root.
—.folder/package

How to add custom OpenMDAO modules to FAST-OAD as a plugin
Once you have created your custom modules for FAST-OAD (see How fo add custom OpenMDAQO modules to FAST-
OAD), you may want to share them with other users, which can be done in two ways:

* Providing your code so they can copy it on their computer and have them set their custom_modules field ac-
cordingly in their FAST-OAD configuration file.

» Packaging your code as a FAST-OAD plugin and have them install it through pip or equivalent.

To declare your custom modules as a FAST-OAD plugin, you have to package them the usual way and declare them as
a plugin with fastoad_model as plugin group name.

This can be done classically with setuptools. It can also be done with Poetry, which is the way described below:

* Plugin declaration

* Building

* Publishing

1.5. General documentation 49

https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata
https://python-poetry.org

FAST-OAD, Release unknown

Plugin declaration

Assuming you project contains the package start_trek.drives that contains models you want to share, you can
declare your plugin in your pyproject.toml file with:

[tool.poetry.plugins."fastoad_model"]
"internal_models" = "start_trek.drives"

Once your pyproject.toml is set, you can do poetry install. Besides installing your project dependencies, it will
make your models locally available (i.e. you could use their identifiers in your FAST-OAD configuration file without
setting the custom_modules field)

Building

You can build your package with the command line poetry build. Let’s assume your pyproject.toml file is
configured so that your project name is STST_drive_models, as below:

[tool.poetry]
name = "ST_drive_models"
version = "1.0.0"

It will create a dist folder with two files: ST_drive_models-1.0.0.tar.gz and ST_drive_models-1.0.
0-py3-none-any.whl (or something like this).

You may then have sent any of those two files to another user, who may then install your models using pip with:

$ pip install ST_drive_models-1.0.0-py3-none-any.whl # or ST _drive_models-1.0.0.tar.gz

Publishing

Once you have built your package, you may publish it on a a package repository. poetry publish will publish your
package on PyPI, provided that you have correctly set your account.

Poetry can also publish to another destination.

Please see here for detailed information.

50 Chapter 1. Contents

https://pypi.org
https://python-poetry.org/docs/cli/#publish

FAST-OAD, Release unknown

Submodels in FAST-OAD

Warning: Submodel feature is still considered as experimental.

It as a feature for advanced users that want to replace a specific part of an existing FAST-OAD modules. At the very
minimum, it needs a good understanding of the existing module because the developer is left with the responsibility
to define a submodel that will work correctly in place of the original one.

Why submodels ?

FAST-OAD modules are generally associated to a discipline, and do all the related computations. For example, the
native weight module computes the masses and the centers of gravity of each aircraft part and of the whole aircraft.

Now, let’s say we want to modify the computation of wing mass. Then, we could add a new weight module where the
only difference will be in the wing mass computation. This is not satisfactory because it would makes us copy all the
code that is not related to wing mass.

To solve this problem, one solution would be to make smaller, more specific modules, and have them assembled in the
configuration file. But it would result in very complex configuration files, and we do not want that.

There comes the principle of submodels. By using the RegisterSubmodel class in a FAST-OAD module, it is possible
to allow some parts of the model to be changed later by a declared submodel.

How to use submodels in a custom module ?

Let’s consider you want to build a custom module that will compute the number of atoms in the fuselage and the wing
(don’t ask me why you would do that, it is just an assumption).

You would begin by creating two om.ExplicitComponent classes: CountWingAtoms and CountFuselageAtoms.
Then you would create the om.Group class that will be the registered FAST-OAD module. The Python code would
look like:

import openmdao.api as om
import fastoad.api as oad

class CountWingAtoms(om.ExplicitComponent) :
"""Put any implementation here'""
class CountFuselageAtoms(om.ExplicitComponent) :
"""Put any implementation here'""
class CountEmpennageAtoms(om.ExplicitComponent):
"""Put any implementation here'""
@oad.RegisterOpenMDAOSystem(''count.atoms")
class CountAtoms (om.Group) :
def setup(self):
wing_component = CountWingAtoms()
fuselage_component = CountFuselageAtoms()
empennage_component = CountEmpennageAtoms()
self.add_subsystem("wing", wing_component, promotes=["*"])
self.add_subsystem("fuselage"”, fuselage_component, promotes=["*"])
self.add_subsystem("empennage", empennage_component, promotes=["*"])

1.5. General documentation 51

FAST-OAD, Release unknown

In the above implementation, someone that would want to provide an alternate method to count atoms in the wing,
while keeping your method for fuselage, would have to provide its own FAST-OAD module, ideally by reusing your
CountFuselageAtoms class, but possibly by needlessly copying it in its own code.

To allow a simpler replacement of your submodels, you will need to use the RegisterSubmodel class like this:

import openmdao.api as om
import fastoad.api as oad

WING_ATOM_COUNTER = "atom_counter.wing"
FUSELAGE_ATOM_COUNTER = "atom_counter. fuselage"
EMPENNAGE_ATOM_COUNTER = "atom_counter.empennage"

@oad.RegisterSubmodel (WING_ATOM_COUNTER, "original.counter.wing)
class CountWingAtoms(om.ExplicitComponent) :

"""Put any implementation here'""
@oad.RegisterSubmodel (FUSELAGE_ATOM_COUNTER, "original.counter.fuselage)
class CountFuselageAtoms(om.ExplicitComponent) :

"""Put any implementation here'""
@oad.RegisterSubmodel (EMPENNAGE_ATOM_COUNTER, "original.counter.empennage)
class CountEmpennageAtoms (om.ExplicitComponent):

"""Put any implementation here"""

@oad.RegisterOpenMDAOSystem(''count.atoms")
class CountAtoms (om.Group) :
def setup(self):

wing_component = oad.RegisterSubmodel.get_submodel (WING_ATOM_COUNTER)
fuselage_component = oad.RegisterSubmodel.get_submodel (FUSELAGE_ATOM_COUNTER)
empennage_component = oad.RegisterSubmodel.get_submodel (EMPENNAGE_ATOM_COUNTER)
self.add_subsystem("wing", wing_component, promotes=["*"])
self.add_subsystem("fuselage", fuselage_component, promotes=["*"])
self.add_subsystem("empennage", empennage_component, promotes=["*"])

This has the same behavior as the previous one, but the second one will allow substitution of submodels, as shown in
next part.

In details, CountWingAtoms is declared as a submodel that fulfills the role of “wing atom counter”, identified by the
"atom_counter.wing" (that is put in constant WING_ATOM_COUNTER to avoid typos, as it is used several times). The
same applies to the roles of “fuselage atom counter” and “empennage atom counter”.

In the CountAtoms class, the submodel that counts wing atoms is retrieved with oad.RegisterSubmodel.
get_submodel (WING_ATOM_COUNTER).

Important: As long as only one submodel is declared in all the used Python modules, the above instruction will
provide it.

52 Chapter 1. Contents

FAST-OAD, Release unknown

How to declare a custom submodel ?

As you have seen, we have already declared submodels in our previous custom module. The process for providing an
alternate submodel is identical:

import openmdao.api as om
import fastoad.api as oad

@oad.RegisterSubmodel ("atom_counter.wing"”, "alternate.counter.wing')
class CountWingAtoms(om.ExplicitComponent) :
"""Put another implementation here

e

At this point, there are now 2 available submodels for the “atom_counter.wing” requirement. If we do nothing else, the
command oad.RegisterSubmodel.get_submodel ("atom_counter.wing") will raise an error because FAST-
OAD needs to be instructed what submodel to use.

The first way to do that is by Python. You may insert the following line at module level (i.e. not in any class or function):

oad.RegisterSubmodel.active_models["atom_counter.wing"] = "alternate.counter.wing"

The best place for such line would probably be in the module that defines your submodel. In this case, our above
example would become:

import openmdao.api as om
import fastoad.api as oad

oad.RegisterSubmodel.active_models["atom_counter.wing"] = "alternate.counter.wing"

@oad.RegisterSubmodel ("atom_counter.wing"”, "alternate.counter.wing')
class CountWingAtoms (om.ExplicitComponent):
"""Put another implementation here

mren

Warning: In case several Python modules define their own chosen submodel for the same requirement, the last
interpreted line will preempt, which is not a reliable way to do. We currently expect such situation to be rare, where
more than one alternate submodel would be available (for the same requirement) in one set of FAST-OAD modules.
Anyway, in such situation, the only reliable way will be to use the configuration file, as instructed below.

How to use submodels from configuration file ?

The second way to define what submodels should be used is by using FAST-OAD configuration file.

Note: When it comes to the specification of submodels to be used, the configuration file will have the priority over
any Python instruction.

The configuration file can be populated with a specific section that will state the submodels that should be chosen.

submodels:
- atom_counter.wing: alternate.counter.wing
- atom_counter. fuselage: original.counter.fuselage

1.5. General documentation 53

FAST-OAD, Release unknown

In the above example, an alternate submodel is chosen for the “atom_counter.wing” requirement, whereas the original
submodel is chosen for the “original.counter.fuselage” requirement (whether there is another one defined or not). No
submodel is defined for the “atom_counter.empennage” requirement, which lets the choice to be done in Python, as
explained in above sections.

Deactivating a submodel

It is also possible to deactivate a submodel:

import fastoad.api as oad

i

oad.RegisterSubmodel.active_models["atom_counter.wing"] = None # The empty string is.,
—also possible

Then nothing will be done when the “atom_counter.wing” submodel will be called. Of course, one has to correctly
know which variables will be missing with such setting and what consequences it will have on the whole problem.

From the configuration file, it can be done with:

submodels:
- atom_counter.wing: null # The empty string

nn

is also possible

1.6 fastoad

1.6.1 fastoad package

Subpackages

fastoad.cmd package
Subpackages
Submodules
fastoad.cmd.api module

API

fastoad.cmd.api.generate_configuration_file(configuration_file_path: str, overwrite: bool = False)
Generates a sample configuration file.

Parameters
e configuration_file_path - the path of file to be written
* overwrite — if True, the file will be written, even if it already exists
Raises FastFileExistsError — if overwrite==False and configuration_file_path already exists

fastoad.cmd.api.generate_inputs (configuration_file_path: str, source_path: Optional[str] = None,
source_path_schema="native', overwrite: bool = False) — str
Generates input file for the problem specified in configuration_file_path.

54 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

Parameters
* configuration_file_path — where the path of input file to write is set
» source_path — path of file data will be taken from
» source_path_schema — set to ‘legacy’ if the source file come from legacy FAST
» overwrite — if True, file will be written even if one already exists
Returns path of generated file
Raises FastFileExistsError — if overwrite==False and configuration_file_path already exists

fastoad.cmd.api.list_variables (configuration_file_path: str, out: Optional[Union[IO, str]] = None,
overwrite: bool = False, force_text_output: bool = False, tablefmt: str =
'grid")
Writes list of variables for the problem specified in configuration_file_path.

List is generally written as text. It can be displayed as a scrollable table view if: - function is used in an interactive
[Python shell - out == sys.stdout - force_text_output == False

Parameters
» configuration_file_path —
* out - the output stream or a path for the output file (None means sys.stdout)

* overwrite — if True and out parameter is a file path, the file will be written even if one
already exists

» force_text_output — if True, list will be written as text, even if command is used in
an interactive IPython shell (Jupyter notebook). Has no effect in other shells or if out
parameter is not sys.stdout

* tablefmt — The formatting of the requested table. Options are the same as those available
to the tabulate package. See tabulate.tabulate_formats for a complete list.

Raises FastFileExistsError — if overwrite==False and out parameter is a file path and the file
exists

fastoad.cmd.api.list_modules(source_path: Optional[Union[str, List[str]]] = None, out: Optional[Union[IO,
str]] = None, overwrite: bool = False, verbose: bool = False,
Jforce_text_output: bool = False)

Writes list of available systems. If source_path is given and if it defines paths where there are
registered systems, they will be listed too.

param source_path either a configuration file path, folder path, or list of folder path
param out the output stream or a path for the output file (None means sys.stdout)

param overwrite if True and out is a file path, the file will be written even if one already
exists

param verbose if True, shows detailed information for each system if False, shows only
identifier and path of each system

param force_text_output if True, list will be written as text, even if command is used
in an interactive IPython shell (Jupyter notebook). Has no effect in other shells or if
out parameter is not sys.stdout

Raises FastFileExistsError — if overwrite==False and out is a file path and the file exists

1.6. fastoad 55

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

FAST-OAD, Release unknown

fastoad.cmd.api.write_n2 (configuration_file_path: str, n2_file_path: str = 'n2.html', overwrite: bool = False)
Write the N2 diagram of the problem in file n2.html

Parameters
e configuration_file_path —
e n2_file_path -
e overwrite —

fastoad.cmd.api.write_xdsm(configuration_file_path: str, xdsm_file_path: Optional[str] = None, overwrite:
bool = False, depth: int = 2, wop_server_url: Optional[str] = None, dry_run:
bool = False)

Parameters
e configuration_file_path —
» xdsm_file_path — the path for HTML file to be written (will overwrite if needed)
» overwrite — if False, will raise an error if file already exists.
* depth — the depth analysis for WhatsOpt

» wop_server_url — URL of WhatsOpt server (if None, ether.onera.fr/whatsopt will be
used)

e dry_run - if True, will run wop without sending any request to the server. Generated
XDSM will be empty. (for test purpose only)

Returns

fastoad.cmd.api.evaluate_problem(configuration_file_path: str, overwrite: bool = False) —
fastoad.openmdao.problem. FASTOADProblem
Runs model according to provided problem file

Parameters
» configuration_file_path — problem definition
* overwrite — if True, output file will be overwritten
Returns the OpenMDAO problem after run

fastoad.cmd. api.optimize_problem(configuration_file_path: str, overwrite: bool = False, auto_scaling: bool
= False) — fastoad.openmdao.problem.FASTOADProblem
Runs driver according to provided problem file

Parameters
» configuration_file_path — problem definition
» overwrite - if True, output file will be overwritten

* auto_scaling - if True, automatic scaling is performed for design variables and con-
straints

Returns the OpenMDAO problem after run

fastoad.cmd.api.optimization_viewer (configuration_file_path: str)
Displays optimization information and enables its editing

Parameters configuration_file_path — problem definition

Returns display of the OptimizationViewer

56 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.cmd.api.variable_viewer (file_path: str, file_formatter:
Optional[fastoad.io.formatter.I VariablelOFormatter] = None,
editable=True)
Displays a widget that enables to visualize variables information and edit their values.

Parameters
« file_path — the path of file to interact with

e file_formatter — the formatter that defines file format. If not provided, default format
will be assumed.

» editable - if True, an editable table with variable filters will be displayed. If False, the
table will not be editable nor searchable, but can be stored in an HTML file.

Returns display handle of the VariableViewer

fastoad.cmd.exceptions module

Exception for cmd package

exception fastoad.cmd.exceptions.FastFileExistsError (*args)
Bases: fastoad.exceptions.FastError

Raised when asked for writing a file that already exists

fastoad.cmd.fast module

Command Line Interface.

class fastoad.cmd.fast.Main
Bases: object

Class for managing command line and doing associated actions

run()
Main function.

fastoad.cmd. fast.main()

Module contents

fastoad.gui package

Subpackages

Submodules
fastoad.gui.analysis_and_plots module

Defines the analysis and plotting functions for postprocessing

1.6. fastoad 57

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object

FAST-OAD, Release unknown

fastoad.gui.analysis_and_plots.wing_geometry_plot (aircraft_file_path: str, name=None, fig=None,
file_formatter=None) —
plotly.graph_objs._figurewidget.FigureWidget
Returns a figure plot of the top view of the wing. Different designs can be superposed by providing an existing
fig. Each design can be provided a name.

Parameters
e aircraft_file_path — path of data file
* name — name to give to the trace added to the figure
» fig - existing figure to which add the plot

o file_formatter — the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns wing plot figure

fastoad.gui.analysis_and_plots.aircraft_geometry_plot (aircraft_file_path: str, name=None,
fig=None, file_formatter=None) —
plotly.graph_objs._figurewidget.FigureWidget
Returns a figure plot of the top view of the wing. Different designs can be superposed by providing an existing
fig. Each design can be provided a name.

Parameters
e aircraft_file_path — path of data file
* name — name to give to the trace added to the figure
o fig - existing figure to which add the plot

o file_formatter - the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns wing plot figure

fastoad.gui.analysis_and_plots.drag_polar_plot (aircraft_file_path: str, name=None, fig=None,
file_formatter=None) —
plotly.graph_objs._figurewidget.FigureWidget
Returns a figure plot of the aircraft drag polar. Different designs can be superposed by providing an existing fig.
Each design can be provided a name.

Parameters
e aircraft_file_path — path of data file
* name — name to give to the trace added to the figure
» fig - existing figure to which add the plot

» file_formatter - the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns wing plot figure

fastoad.gui.analysis_and_plots.mass_breakdown_bar_plot (aircraft file_path: str, name=None,
fig=None, file_formatter=None) —
plotly.graph_objs._figurewidget.FigureWidget
Returns a figure plot of the aircraft mass breakdown using bar plots. Different designs can be superposed by
providing an existing fig. Each design can be provided a name.

Parameters

58 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

» aircraft_file_path - path of data file
* name — name to give to the trace added to the figure
o fig - existing figure to which add the plot

o file_formatter - the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns bar plot figure

fastoad.gui.analysis_and_plots.mass_breakdown_sun_plot (aircraft_file_path: str, file_formatter=None)
Returns a figure sunburst plot of the mass breakdown. On the left a MTOW sunburst and on the right a OWE
sunburst. Different designs can be superposed by providing an existing fig. Each design can be provided a name.

Parameters
» aircraft_file_path — path of data file

o file_formatter - the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns sunburst plot figure

fastoad.gui.exceptions module

Exception for GUI

exception fastoad.gui.exceptions.FastMissingFile
Bases: fastoad.exceptions.FastError

Raised when a file does not exist

fastoad.gui.mission_viewer module

Defines the analysis and plotting functions for postprocessing regarding the mission

class fastoad.gui.mission_viewer.MissionViewer
Bases: object

A class for facilitating the post-processing of mission and trajectories

add_mission(mission_data: Union[str, pandas.core.frame.DataFrame], name=None)
Adds the mission to the mission database (self.missions) :param mission_data: path of the mission file or
Dataframe containing the mission data :param name: name to give to the mission

display (change=None) — IPython.core.display.display
Display the user interface :return the display object

1.6. fastoad 59

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

fastoad.gui.optimization_viewer module

Defines the variable viewer for postprocessing

class fastoad.gui.optimization_viewer.OptimizationViewer
Bases: object

A class for interacting with FAST-OAD Problem optimization information.

problem_configuration:
fastoad.io.configuration.configuration.FASTOADProblemConfigurator
Instance of the FAST-OAD problem configuration

dataframe
The dataframe which is the mirror of self file

load (problem_configuration: tastoad.io.configuration.configuration. FASTOADProblemConfigurator)
Loads the FAST-OAD problem and stores its data.

Parameters problem_configuration — the FASTOADProblem instance.

save()
Save the optimization to the files. Possible files modified are:

¢ the .yml configuration file
* the input file (initial values)
* the output file (values)

display()
Displays the datasheet. load() must be ran before.

Returns display of the user interface:

load_variables(variables: fastoad.openmdao.variables.VariableList, attribute_to_column:
Optional[Dict[str, str]] = None)
Loads provided variable list and replace current data set.

Parameters
e variables — the variables to load

e attribute_to_column — dictionary keys tell what variable attributes are kept and
the values tell what name will be displayed. If not provided, default translation will

apply.

get_variables (column_to_attribute: Optional[Dict[str, str]] = None) —
fastoad.openmdao.variables.VariableList

Parameters column_to_attribute — dictionary keys tell what columns are kept and the
values tell whatvariable attribute it corresponds to. If not provided, default translation will

apply.

Returns a variable list from current data set

60 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.gui.variable_viewer module

Defines the variable viewer for postprocessing

class fastoad.gui.variable_viewer.VariableViewer
Bases: object

A class for interacting with FAST-OAD files. The file data is stored in a pandas DataFrame. The class built so
that a modification of the DataFrame is instantly replicated on the file file. The interaction is achieved using a

user interface built with widgets from ipywidgets and Sheets from ipysheet.

A classical usage of this class will be:

df = VariableViewer() # instantiation of dataframe

file = AbstractOMFileIO('problem_outputs.file') # instantiation of file io
df.load(file) # load the file

df.display() # renders a ui for reading/modifying the file

file
The path of the data file that will be viewed/edited

dataframe
The dataframe which is the mirror of self file

load(file_path: str, file_formatter: Optional[fastoad.io.formatter.IVariablelOFormatter] = None)
Loads the file and stores its data.

Parameters
e file_path - the path of file to interact with

e file_formatter — the formatter that defines file format. If not provided, default
format will be assumed.

save (file_path: Optional[str] = None, file_formatter: Optional[fastoad.io.formatter.IVariablelOFormatter] =

None)
Save the dataframe to the file.

Parameters

e file_path — the path of file to save. If not given, the initially read file will be over-
written.

o file_formatter — the formatter that defines file format. If not provided, default
format will be assumed.

display()
Displays the datasheet :return display of the user interface:

load_variables(variables: fastoad.openmdao.variables.VariableList, attribute_to_column:
Optional[Dict[str, str]] = None)
Loads provided variable list and replace current data set.

Parameters
e variables — the variables to load

e attribute_to_column — dictionary keys tell what variable attributes are kept and
the values tell what name will be displayed. If not provided, default translation will

apply.

1.6. fastoad

61

https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

get_variables (column_to_attribute: Optional[Dict[str, str]] = None) —
fastoad.openmdao.variables.VariableList

Parameters column_to_attribute — dictionary keys tell what columns are kept and the
values tell what variable attribute it corresponds to. If not provided, default translation
will apply.

Returns a variable list from current data set

Module contents

fastoad.io package

Subpackages

fastoad.io.configuration package
Subpackages

Submodules
fastoad.io.configuration.configuration module

Module for building OpenMDAO problem from configuration file

class fastoad.io.configuration.configuration.FASTOADProblemConfigurator (conf file_path=None)
Bases: object

class for configuring an OpenMDAO problem from a configuration file
See description of configuration file.
Parameters conf_file_path — if provided, configuration will be read directly from it

property input_file_path
path of file with input variables of the problem

property output_file_path
path of file where output variables will be written

get_problem(read_inputs: bool = False, auto_scaling: bool = False) —
fastoad.openmdao.problem. FASTOADProblem
Builds the OpenMDAO problem from current configuration.

Parameters

e read_inputs - if True, the created problem will already be fed with variables from
the input file

¢ auto_scaling - if True, automatic scaling is performed for design variables and
constraints

Returns the problem instance

load (conf file)
Reads the problem definition

62 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

FAST-OAD, Release unknown

Parameters conf_file — Path to the file to open or a file descriptor

save (filename: Optional[str] = None)
Saves the current configuration If no filename is provided, the initially read file is used.

Parameters filename - file where to save configuration

write_needed_inputs (source_file_path: Optional[str] = None, source_formatter:
Optional[fastoad.io.formatter.IVariablelOFormatter] = None)
Writes the input file of the problem with unconnected inputs of the configured problem.

Written value of each variable will be taken:
1. from input_data if it contains the variable

2. from defined default values in component definitions

Parameters
» source_file_path - if provided, variable values will be read from it
» source_formatter — the class that defines format of input file. if not provided, ex-

pected format will be the default one.

get_optimization_definition() — Dict

Returns information related to the optimization problem:
* Design Variables
* Constraints

* Objectives
Returns dict containing optimization settings for current problem

set_optimization_definition(optimization_definition: Dict)
Updates configuration with the list of design variables, constraints, objectives contained in the optimiza-
tion_definition dictionary.

99 ¢ CLINT3

Keys of the dictionary are: “design_var”, “constraint”, “objective”.
Configuration file will not be modified until save () is used.

Parameters optimization_definition — dict containing the optimization problem defini-
tion

class fastoad.io.configuration.configuration.AutoUnitsDefaultGroup (**kwargs)
Bases: openmdao.core.group.Group

OpenMDAO group that automatically use self.set_input_defaults() to resolve declaration conflicts in variable
units.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

configure()
Configure this group to assign children settings.

This method may optionally be overidden by your Group’s method.

1.6. fastoad 63

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

You may only use this method to change settings on your children subsystems. This includes setting solvers
in cases where you want to override the defaults.

You can assume that the full hierarchy below your level has been instantiated and has already called its
own configure methods.

Available attributes: name pathname comm options system hieararchy with attribute access

class fastoad.io.configuration.configuration.FASTOADModel (**kwargs)
Bases: fastoad.io.configuration.configuration.AutoUnitsDefaultGroup

OpenMDAO group that defines active submodels after the initialization of all its subsystems, and inherits from
AutoUnitsDefaul tGroup for resolving declaration conflicts in variable units.

It allows to have a submodel choice in the initialize() method of a FAST-OAD module, but to possibly override
it with the definition of active_submodels (i.e. from the configuration file).

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

active_submodels
Definition of active submodels that will be applied during setup()

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.io.configuration.exceptions module

Exceptions for package configuration

exception fastoad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError (original_exception:
Excep-
tion,
key:
str,
value=None)
Bases: fastoad.exceptions.FastError

Class for being raised from bottom to top of TOML dict so that in the end, the message provides the full qualified
name of the problematic key.

using new_err = FASTConfigurationBaseKeyBuildingError(err, ‘new_err_key’, <value>):
« if err is a FASTConfigurationBaseKeyBuildingError instance with err.key=="err_key’:
— new_err.key will be ‘new_err_key.err_key’
— new_err.value will be err.value (no need to provide a value here)

— new_err.original_exception will be err.original_exception

64 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

 otherwise, new_err.key will be ‘new_err_key’ and new_err.value will be <value>
— new_err.key will be ‘new_err_key’
— new_err.value will be <value>

— new_err.original_exception will be err

Parameters
* original_exception — the error that happened for raising this one
 key — the current key

¢ value — the current value

Constructor

key
the “qualified key” (like “problem.group.component1”) related to error, build through raising up the error

value
the value related to error

original_exception
the original error, when eval failed

exception fastoad.io.configuration.exceptions.FASTConfigurationBadOpenMDAOInstructionError (original_except:

Ex-

cep-

tion,

key:

Str,
value=None)

Bases: fastoad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError

Class for managing errors that result from trying to set an attribute by eval.
Constructor

exception fastoad.io.configuration.exceptions.FASTConfigurationNanInInputFile (input_file_path:
Str,
nan_variable_names:
List[str])
Bases: fastoad.exceptions.FastError

Raised if NaN values are read in input data file.

Module contents

Package for building OpenMDAOQO problem from configuration file

1.6. fastoad 65

https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.io.xml package
Subpackages

Submodules
fastoad.io.xml.constants module

Constants for the XML module

fastoad.io.xml.constants.DEFAULT_UNIT_ATTRIBUTE = 'units'
label of tag attribute for providing units as a string

fastoad.io.xml.constants.DEFAULT_IO_ATTRIBUTE = 'is_input'
label of tag attribute for providing io variable type as boolean

fastoad.io.xml.constants.ROOT_TAG = 'FASTOAD_model’
name of root element for XML files

fastoad.io.xml.exceptions module

Exceptions for io.xml module

exception fastoad.io.xml.exceptions.FastXPathEvalError
Bases: fastoad.exceptions.FastError

Raised when some xpath could not be resolved

exception fastoad.io.xml.exceptions.FastXpathTranslatorInconsistentLists
Bases: fastoad.exceptions.FastError

Raised when list of variable names and list of XPaths have not the same length

exception fastoad.io.xml.exceptions.FastXpathTranslatorDuplicates
Bases: fastoad.exceptions.FastError

Raised when list of variable names or list of XPaths have duplicate entries

exception fastoad.io.xml.exceptions.FastXpathTranslatorVariableError (variable)
Bases: fastoad.exceptions.FastError

Raised when a variable does not match any xpath in the translator file.

exception fastoad.io.xml.exceptions.FastXpathTranslatorXPathError (xpath)
Bases: fastoad.exceptions.FastError

Raised when a xpath does not match any variable in the translator file.

exception fastoad.io.xml.exceptions.FastXmlFormatterDuplicateVariableError
Bases: fastoad.exceptions.FastError

Raised a variable is defined more than once in a XML file

66 Chapter 1

. Contents

FAST-OAD, Release unknown

fastoad.io.xml.translator module

Conversion from OpenMDAO variables to XPath

class fastoad.io.xml.translator.VarXpathTranslator (*, variable_names: Optional[Sequence[str]] =
None, xpaths: Optional[Sequence[str]] = None,
source: Optional[Union[lO, str]] = None)
Bases: object

Allows to convert OpenMDAO variable names from and to XPath, using a provided conversion table.
At instantiation, user can provide (as keyword arguments only):

* variable_names and xpaths (see set())

e translation file (see read_translation_table())

set (variable_names: Sequence[str], xpaths: Sequence[str])
Sets the “conversion table”, i.e. two lists where each element matches the other with same index. Provided
lists must have the same length.

Parameters
e variable_names — List of OpenMDAO variable names
¢ xpaths — List of XML Paths

read_translation_table(source: Union[str, IO])
Reads a file that sets how OpenMDAO variable are matched to XML Path. Provided file should have 2
comma-separated columns:

¢ first one with OpenMDAO names

* second one with their matching XPath
Parameters source —
property variable_names: Sequence[str]

List of variable names as set in set ()

property xpaths: Sequence[str]
List of XPaths as set in set ()

get_xpath(var_name: str) — str

Parameters var_name — OpenMDAO variable name
Returns XPath that matches var_name
Raises FastXpathTranslatorVariableError — if var_name is unknown

get_variable_name (xpath: str) — str

Parameters xpath — XML Path
Returns OpenMDAQO variable name that matches xpath

Raises FastXpathTranslatorXPathError — if xpath is unknown

1.6. fastoad 67

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.io.xml.variable_io_base module

Defines how OpenMDAO variables are serialized to XML using a conversion table

class fastoad.io.xml.variable_io_base.VariableXmlBaseFormatter (translator: fas-
toad.io.xml.translator. VarXpathTranslator)
Bases: fastoad.io. formatter.IVariableIOFormatter

Customizable formatter for variables

User must provide at instantiation a VarXpathTranslator instance that tells how variable names should be con-
verted from/to XPath.

Note: XPath are always considered relatively to the root. Therefore, “foo/bar” should be provided to match
following XML structure:

<root>
<foo>
<bar>
"some value"
</bar>
</foo>
</root>

Parameters translator — the VarXpathTranslator instance
xml_unit_attribute
The XML attribute key for specifying units

xml_io_attribute
The XML attribute key for specifying I/O status

read_variables (data_source: Union[str, IO]) — fastoad.openmdao.variables.VariableList
Reads variables from provided data source file.

Parameters data_source —
Returns a list of Variable instance

write_variables(data_source: Union[str, I0], variables: tastoad.openmdao.variables.VariableList)
Writes variables to defined data source file.

Parameters
e data_source —

e variables —

fastoad.io.xml.variable_io_legacy module

Readers for legacy XML format

class fastoad.io.xml.variable_io_legacy.VariableLegacylXmlFormatter
Bases: fastoad.io.xml.variable_io_base.VariableXmlBaseFormatter

Formatter for legacy XML format (version “1”’)

68 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.io.xml.variable_io_standard module

Defines how OpenMDAO variables are serialized to XML

class fastoad.io.xml.variable_io_standard.VariableXmlStandardFormatter
Bases: fastoad.io.xml.variable_io_base.VariableXmlBaseFormatter

Standard XML formatter for variables

Assuming self.path_separator is defined as : (default), a variable named like foo:bar with units m/s will be
read and written as:

<aircraft>

<foo>
<bar units="m/s" > 42.0</bar>

</foo>

<aircraft>

When writing outputs of a model, OpenMDAO component hierarchy may be used by defining

self.path_separator = '. # Discouraged for reading !
self.use_promoted_names = False

This way, a variable like componentA. subcomponent2.my_var will be written as:

<aircraft>
<componentA>
<subcomponent2>
<my_var units="m/s" >72.0</my_var>
</subcomponent2>
<componentA>
<aircraft>

property path_separator
The separator that will be used in OpenMDAO variable names to match XML path. Warning: The dot “.”
can be used when writing, but not when reading.

read_variables (data_source: Union[str, IO]) — fastoad.openmdao.variables.VariableList
Reads variables from provided data source file.

Parameters data_source —
Returns a list of Variable instance

write_variables(data_source: Union[str, I0], variables: fastoad.openmdao.variables.VariableList)
Writes variables to defined data source file.

Parameters
¢ data_source —
e variables —

class fastoad.io.xml.variable_io_standard.BasicVarXpathTranslator (path_separator)
Bases: fastoad.io.xml.translator.VarXpathTranslator

Dedicated VarXpathTranslator that builds variable names by simply converting the ‘/° separator of XPaths into
the desired separator.

get_variable_name (xpath: str) — str

1.6. fastoad 69

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

Parameters xpath — XML Path
Returns OpenMDAQO variable name that matches xpath
Raises FastXpathTranslatorXPathError — if xpath is unknown

get_xpath(var_name: str) — str

Parameters var_name — OpenMDAO variable name
Returns XPath that matches var_name

Raises FastXpathTranslatorVariableError — if var_name is unknown

Module contents

Package for handling XML files

Submodules
fastoad.io.formatter module

class fastoad.io.formatter.IVariableIOFormatter
Bases: abc.ABC

Interface for formatter classes to be used in VariablelO class.
The file format is defined by the implementation of this interface.

abstract read_variables(data_source: Union[str, IO]) — fastoad.openmdao.variables.VariableList
Reads variables from provided data source file.

Parameters data_source —
Returns a list of Variable instance

abstract write_variables(data_source: Union[str, IO], variables:
fastoad.openmdao.variables. VariableList)
Writes variables to defined data source file.

Parameters
¢ data_source —

e variables —

fastoad.io.variable_io module

class fastoad.io.variable_io.VariableIO(data_source: Union[str, 10], formatter:
Optional[fastoad.io.formatter.IVariablelOFormatter] = None)
Bases: object

Class for reading and writing variable values from/to file.
The file format is defined by the class provided as formatter argument.
Parameters

» data_source - the I/O stream, or a file path, used for reading or writing data

70 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object

FAST-OAD, Release unknown

o formatter — a class that determines the file format to be used. Defaults to a VariableBa-
sicXmlFormatter instance.

read(only: Optional[List[str]] = None, ignore: Optional[List[str]] = None) —
fastoad.openmdao.variables.VariableList
Reads variables from provided data source.

Elements of only and ignore can be real variable names or Unix-shell-style patterns. In any case, compar-
ison is case-sensitive.

Parameters

e only - List of variable names that should be read. Other names will be ignored. If
None, all variables will be read.

¢ ignore — List of variable names that should be ignored when reading.
Returns an VariableList instance where outputs have been defined using provided source

write (variables: fastoad.openmdao.variables.VariableList, only: Optional[List[str]] = None, ignore:
Optional[List[str]] = None)
Writes variables from provided VariableList instance.

Elements of only and ignore can be real variable names or Unix-shell-style patterns. In any case, compar-
ison is case-sensitive.

Parameters
e variables — a VariableList instance

» only — List of variable names that should be written. Other names will be ignored. If
None, all variables will be written.

¢ ignore — List of variable names that should be ignored when writing

class fastoad.io.variable_io.DataFile(file_path: str, formatter:
Optional[fastoad.io.formatter.IVariablelOFormatter] = None,
load_data=True)
Bases: fastoad.openmdao.variables.VariableList

Class for managing FAST-OAD data files.
Behaves like VariableList class but has Ioad() and save () methods.
Parameters
» file_path - the file path where data will be loaded and saved.

o formatter — a class that determines the file format to be used. Defaults to FAST-OAD
native format. See VariableIO for more information.

¢ load_data — if True and if file exists, its content will be loaded at instantiation.

property file_path: str
Path of data file.

property formatter: fastoad.io.formatter.IVariableIOFormatter
Class that defines the file format.

load()
Loads file content.

save()
Saves current state of variables in file.

1.6. fastoad 71

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

Module contents

Package for handling input/output streams

fastoad.model_base package

Subpackages

Submodules

fastoad.model_base.atmosphere module

Simple implementation of International Standard Atmosphere.

class fastoad.model_base.atmosphere.Atmosphere (altitude: Unionf[float, Sequence(float]], delta_t: float =

0.0, altitude_in_feet: bool = True)
Bases: object

Simple implementation of International Standard Atmosphere for troposphere and stratosphere.
Atmosphere properties are provided in the same “shape” as provided altitude:
« if altitude is given as a float, returned values will be floats
« if altitude is given as a sequence (list, 1D numpy array, ...), returned values will be 1D numpy arrays
« if altitude is given as nD numpy array, returned values will be nD numpy arrays

Usage:

>>> pressure = Atmosphere(30000) .pressure # pressure at 30,000 feet, dISA = 0 K
>>> density = Atmosphere(5000, 10).density # density at 5,000 feet, dISA = 10 K

>>> atm = Atmosphere(np.arange(0®,10001,1000, 15)) # init for alt. 0 to 10,000, dISA.
= 15K

>>> temperatures = atm.pressure # pressures for all defined altitudes

>>> viscosities = atm.kinematic_viscosity # viscosities for all defined altitudes

Parameters
» altitude - altitude (units decided by altitude_in_feet)
¢ delta_t - temperature increment (°C) applied to whole temperature profile
e altitude_in_feet — if True, altitude should be provided in feet. Otherwise, it should

be provided in meters.

get_altitude (altitude_in_feet: bool = True) — Union[float, Sequence[float]]

Parameters altitude_in_feet — if True, altitude is returned in feet. Otherwise, it is re-
turned in meters

Returns altitude provided at instantiation

property delta_t: Union[float, Sequence[float]]
Temperature increment applied to whole temperature profile.

72

Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

property temperature: Union[float, Sequence[float]]
Temperature in K.

property pressure: Union[float, Sequence[float]]
Pressure in Pa.

property density: Union[float, Sequence[float]]
Density in kg/m3.

property speed_of_sound: Union[float, Sequence[float]]
Speed of sound in m/s.

property kinematic_viscosity: Union[float, Sequence[float]]
Kinematic viscosity in m2/s.

property mach: Union[float, Sequence[float]]
Mach number.

property true_airspeed: Union[float, Sequence[float]]
True airspeed (TAS) in m/s.

property equivalent_airspeed: Union[float, Sequence[float]]
Equivalent airspeed (EAS) in m/s.

property unitary_reynolds: Union[float, Sequence[float]]
Unitary Reynolds number in 1/m.

class fastoad.model_base.atmosphere.AtmosphereSI (altitude: Union[float, Sequence[float]], delta_t: float
=0.0)
Bases: fastoad.model_base.atmosphere.Atmosphere

Same as Atmosphere except that altitudes are always in meters.
Parameters
» altitude - altitude in meters
e delta_t - temperature increment (°C) applied to whole temperature profile

property altitude
Altitude in meters.

1.6. fastoad 73

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

fastoad.model_base.flight_point module

Structure for managing flight point data.

class fastoad.model_base.flight_point.FlightPoint (time: float = 0.0, altitude: Optional[float] = None,
ground_distance: float = 0.0, mass: Optional[float]
= None, true_airspeed: Optional[float] = None,
equivalent_airspeed: Optionalf[float] = None,
mach: Optional[float] = None, engine_setting:
Optional[fastoad.constants.EngineSetting] = None,
CL: Optional[float] = None, CD: Optional[float] =
None, drag: Optional[float] = None, thrust:
Optional[float] = None, thrust_rate:
Optional[float] = None, thrust_is_regulated:
Optional[bool] = None, sfc: Optional[float] =
None, slope_angle: Optional[float] = None,
acceleration: Optional[float] = None, name:
Optional[str] = None)

Bases: object

Dataclass for storing data for one flight point.
This class is meant for:

* pandas friendliness: data exchange with pandas DataFrames is simple

* extensibility: any user might add fields to the class using add_field()
Exchanges with pandas DataFrame

A pandas DataFrame can be generated from a list of FlightPoint instances:

>>> import pandas as pd
>>> from fastoad.model_base import FlightPoint

>>> fpl = FlightPoint (mass=70000., altitude=0.)
>>> fp2 = FlightPoint(mass=60000., altitude=10000.)
>>> df = pd.DataFrame([fpl, £fp2])

And FlightPoint instances can be created from DataFrame rows:

Get one FlightPoint instance from a DataFrame row
>>> fplbis = FlightPoint.create(df.iloc[0])

Get a list of FlightPoint instances from the whole DataFrame
>>> flight_points = FlightPoint.create_list(df)

Extensibility

FlightPoint class is bundled with several fields that are commonly used in trajectory assessment, but
one might need additional fields.

Python allows to add attributes to any instance at runtime, but for FlightPoint to run smoothly, es-
pecially when exchanging data with pandas, you have to work at class level. This can be done using
add_field(), preferably outside of any class or function:

Adds a float field with None as default value
>>> FlightPoint.add_field("ion_drive_power")

(continues on next page)

74 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object

FAST-OAD, Release unknown

(continued from previous page)

Adds a field and define its type and default value
>>> FlightPoint.add_field("warp", annotation_type=int, default_value=9)

Now these fields can be used at instantiation
>>> fp = FlightPoint(ion_drive_power=110.0, warp=12)

Removes a field, even an original one (useful only to avoid having it in_
—outputs)
>>> FlightPoint.remove_field("sfc")

Note: All parameters in FlightPoint instances are expected to be in SI units.

time: float = 0.0
Time in seconds.

altitude: float = None
Altitude in meters.

ground_distance: float = 0.0
Covered ground distance in meters.

mass: float = None
Mass in kg.

true_airspeed: float = None
True airspeed (TAS) in m/s.

equivalent_airspeed: float = None
Equivalent airspeed (EAS) in m/s.

mach: float = None
Mach number.

engine_setting: fastoad.constants.EngineSetting = None
Engine setting.

CL: float = None
Lift coefficient.

CD: float = None
Drag coefficient.

drag: float = None
Aircraft drag in Newtons.

thrust: float = None
Thrust in Newtons.

thrust_rate: float = None
Thrust rate (between 0. and 1.)

thrust_is_regulated: bool = None
If True, propulsion should match the thrust value. If False, propulsion should match thrust rate.

sfc: float = None
Specific Fuel Consumption in kg/N/s.

1.6. fastoad 75

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

slope_angle: float = None
Slope angle in radians.

acceleration: float = None
Acceleration value in m/s**2.

name: str = None
Name of current phase.

classmethod get_units() — dict
Returns (field name, unit) dict for any field that has a defined unit.

A dimensionless physical quantity will have “-” as unit.

classmethod create(data: Mapping) — fastoad.model_base.flight_point.FlightPoint
Instantiate FlightPoint from provided data.

data can typically be a dict or a pandas DataFrame row.
Parameters data - a dict-like instance where keys are FlightPoint attribute names
Returns the created FlightPoint instance

classmethod create_list(data: pandas.core.frame.DataFrame) —
List[fastoad.model_base.flight_point.FlightPoint]
Creates a list of FlightPoint instances from provided DataFrame.

Parameters data — a dict-like instance where keys are FlightPoint attribute names
Returns the created FlightPoint instance

classmethod add_field(name: str, annotation_type=<class 'float'>, default_value: Optional[Any] =
None, unit=None)
Adds the named field to FlightPoint class.

If the field name already exists, the field is redefined.
Parameters
* name — field name
e annotation_type - field type
e default_value - field default value

e unit — expected unit for the added field (‘- should be provided for a dimensionless
physical quantity)

classmethod remove_field(name)
Removes the named field from FlightPoint class.

Parameters name — field name

scalarize()
Convenience method for converting to scalars all fields that have a one-item array-like value.

76 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

fastoad.model_base.propulsion module

Base classes for propulsion components.

class fastoad.model_base.propulsion.IPropulsion
Bases: abc.ABC

Interface that should be implemented by propulsion models.

Using this class allows to delegate to the propulsion model the management of propulsion-related data when
computing performances.

The performance model calls compute_flight_points() by providing one or several flight points. The
method will feed these flight points with results of the model (e.g. thrust, SFC, ..).

The performance model will then be able to call get_consumed_mass () to know the mass consumption for
each flight point.

Note:

If the propulsion model needs fields that are not among defined fields
of the :class FlightPoint class’, these fields can be made authorized by
:class FlightPoint class . Please see part about extensibility in

:class FlightPoint class’ documentation.

abstract compute_flight_points(flight_points: Union[fastoad.model_base.flight_point.FlightPoint,
pandas.core.frame.DataFrame])
Computes Specific Fuel Consumption according to provided conditions.

See FlightPoint for available fields that may be used for computation. If a DataFrame instance is pro-
vided, it is expected that its columns match field names of FlightPoint (actually, the DataFrame instance
should be generated from a list of FlightPoint instances).

Note: About thrust_is_regulated, thrust_rate and thrust

thrust_is_regulated tells if a flight point should be computed using thrust_rate (when False) or
thrust (when True) as input. This way, the method can be used in a vectorized mode, where each point
can be set to respect a thrust order or a thrust rate order.

 if thrust_is_regulated is not defined, the considered input will be the defined one between
thrust_rate and thrust (if both are provided, thrust_rate will be used)

 if thrust_is_regulatedis True or False (i.e., not a sequence), the considered input will be taken
accordingly, and should of course be defined.

« if there are several flight points, thrust_is_regulated is a sequence or array, thrust_rate
and thrust should be provided and have the same shape as thrust_is_regulated:code:.
The method will consider for each element which input will be used according to
thrust_is_regulated.

Parameters flight_points - FlightPoint or DataFram instance
Returns None (inputs are updated in-place)
abstract get_consumed_mass (flight_point: fastoad.model_base.flight_point.FlightPoint, time_step: float)

— float
Computes consumed mass for provided flight point and time step.

This method should rely on FlightPoint fields that are generated by :meth: compute_flight_points.

1.6. fastoad 77

https://docs.python.org/3.7/library/abc.html#abc.ABC
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

Parameters
e flight_point -
e time_step —
Returns the consumed mass in kg

class fastoad.model_base.propulsion.IOMPropulsionWrapper
Bases: object

Interface for wrapping a IPropulsion subclass in OpenMDAO.

The implementation class defines the needed input variables for instantiating the IPropulsion subclass in
setup () and use them for instantiation in get_model ()

See OMRubberEnginelirapper for an example of implementation.

abstract setup(component: openmdao.core.component. Component)
Defines the needed OpenMDAO inputs for propulsion instantiation as done in get_model ()

Use add_inputs and declare_partials methods of the provided component
Parameters component —

abstract static get_model (inputs) — fastoad.model_base.propulsion.IPropulsion
This method defines the used IPropulsion subclass instance.

Parameters inputs — OpenMDAO input vector where the parameters that define the propul-
sion model are

Returns the propulsion model instance

class fastoad.model_base.propulsion.BaseOMPropulsionComponent (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent, abc.ABC

Base class for creating an OpenMDAO component from subclasses of T0OMPropulsionlirapper.
Classes that implements this interface should add their own inputs in setup() and implement get_wrapper ().
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

78 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

abstract static get_wrapper() — fustoad.model_base.propulsion.IOMPropulsionWrapper
This method defines the used TOMPropulsionlirapper instance.

Returns an instance of OpenMDAO wrapper for propulsion model

class fastoad.model_base.propulsion.AbstractFuelPropulsion
Bases: fastoad.model_base.propulsion.IPropulsion, abc.ABC

Propulsion model that consume any fuel should inherit from this one.

In inheritors, compute_flight_points() is expected to define “sfc” and “thrust” in computed FlightPoint
instances.

get_consumed_mass (flight_point: fastoad.model_base.flight_point.FlightPoint, time_step: float) — float
Computes consumed mass for provided flight point and time step.

This method should rely on FlightPoint fields that are generated by :meth: compute_flight_points.
Parameters
e flight_point -
e time_step —
Returns the consumed mass in kg

class fastoad.model_base.propulsion.FuelEngineSet (engine:
fastoad.model_base.propulsion.IPropulsion,
engine_count)
Bases: fastoad.model_base.propulsion.AbstractFuelPropulsion

Class for modelling an assembly of identical fuel engines.
Thrust is supposed equally distributed among them.
Parameters
* engine - the engine model
e engine_count —

compute_£flight_points(flight points: Union[fastoad.model_base.flight_point.FlightPoint,
pandas.core.frame.DataFrame])
Computes Specific Fuel Consumption according to provided conditions.

See FlightPoint for available fields that may be used for computation. If a DataFrame instance is pro-
vided, it is expected that its columns match field names of FlightPoint (actually, the DataFrame instance
should be generated from a list of FlightPoint instances).

Note: About thrust_is_regulated, thrust_rate and thrust

thrust_is_regulated tells if a flight point should be computed using thrust_rate (when False) or
thrust (when True) as input. This way, the method can be used in a vectorized mode, where each point
can be set to respect a thrust order or a thrust rate order.

 if thrust_is_regulated is not defined, the considered input will be the defined one between
thrust_rate and thrust (if both are provided, thrust_rate will be used)

 if thrust_is_regulatedis True or False (i.e., not a sequence), the considered input will be taken
accordingly, and should of course be defined.

1.6. fastoad 79

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

« if there are several flight points, thrust_is_regulated is a sequence or array, thrust_rate
and thrust should be provided and have the same shape as thrust_is_regulated:code:.
The method will consider for each element which input will be used according to

thrust_is_regulated.

Parameters flight_points — FlightPoint or DataFram instance

Returns None (inputs are updated in-place)

Module contents

Base features for FAST-OAD models

fastoad.models package

Subpackages

fastoad.models.aerodynamics package

Subpackages

fastoad.models.aerodynamics.components package

Subpackages

fastoad.models.aerodynamics.components.utils package

Submodules
fastoad.models.aerodynamics.components.utils.cd0_lifting_surface module

Computation of CDO for a lifting surface.

80

Chapter 1. Contents

FAST-OAD, Release unknown

class fastoad.models.aerodynamics.components.utils.cd®_lifting_surface.LiftingSurfaceGeometry (thickness_rc
float,
MAC _lengtl
float,
sweep_angle

float,

cam-
bered:
bool,
wet_area:

float,

in-

ter-

ac-
tion_coeff:

float)

Bases: object
Minimum geometry data for computation of CDO of lifting surfaces.

thickness_ratio: float
average thickness ratio

MAC_length: float
length of Mean Aerodynamic Chord

sweep_angle_25: float
sweep angle at 25% chord, in degrees

cambered: bool
True if airfoil is cambered

wet_area: float
wet surface area of the lifting surface

interaction_coeff: float
ratio of additional drag due to interaction effects

fastoad.models.aerodynamics.components.utils.cd®_lifting_surface.compute_cd®_lifting_surface(geometry:
fas-
toad.models.:
mach:
float,
reynolds:
float,
wing_area:

float,
lift_coefficien
float

0.0)
Computes CDO for a lifting surface.
Friction coeflicient is assessed from [Ray99] (Eq 12.27). Corrections for lifting surfaces are from [DCAC14].
Parameters

* geometry — definition of lifting surface geometry

¢ mach — Mach number

1.6. fastoad 81

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

* reynolds — Reynolds number
* wing_area — wing area (will be used for getting CD specific to wing area
e 1lift_coefficient — needed if wing is cambered

Returns CDO value

fastoad.models.aerodynamics.components.utils.friction_drag module

Computation of friction drag.

fastoad.models.aerodynamics.components.utils. friction_drag.get_flat_plate_friction_drag_coefficient (leng
mac
reyn

Parameters
¢ length — flat plate length in meters
¢ mach — Mach number
» reynolds — Reynolds number

Returns Drag coefficient w.r.t. a surface of area length*1 m**2

Module contents
Submodules
fastoad.models.aerodynamics.components.cd0 module

Computation of form drag for whole aircraft.

class fastoad.models.aerodynamics.components.cd®.CDO®(**kwargs)
Bases: openmdao.core.group.Group

Computation of form drag for whole aircraft.

Computes and sums the drag coefficients of all components. Interaction drag is assumed to be taken into account
at component level.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.
initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

82 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.models.aerodynamics.components.cd0_fuselage module

Computation of form drag for fuselage.

class fastoad.models.aerodynamics.components.cd®_fuselage.CdOFuselage (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of form drag for fuselage.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initializeQ
Perform any one-time initialization run at instantiation.

setup(
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.cd0_ht module

Computation of form drag for Horizontal Tail Plane.

class fastoad.models.aerodynamics.components.cd®_ht.Cd®HorizontalTail (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of form drag for Horizontal Tail Plane.
See cd0_lifting surface() for used method.

Store some bound methods so we can detect runtime overrides.

1.6. fastoad 83

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initializeQ
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.cd0_nacelles_pylons module

Computation of form drag for nacelles and pylons.

class fastoad.models.aerodynamics.components.cd®_nacelles_pylons.CdONacellesAndPylons (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of form drag for nacelles and pylons.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initializeQ
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters

84 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.cd0_total module

Sum of form drags from aircraft components.

class fastoad.models.aerodynamics.components.cd®_total.Cd®Total (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes the sum of form drags from aircraft components.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 85

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.aerodynamics.components.cd0_vt module

Computation of form drag for Vertical Tail Plane.

class fastoad.models.aerodynamics.components.cd®_vt.Cd®VerticalTail (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of form drag for Vertical Tail Plane.
See cd0_1ifting_ surface() for used method.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None)—If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.cd0_wing module

Computation of form drag for wing.

class fastoad.models.aerodynamics.components.cd®_wing.CdOWing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of form drag for wing.
See cd0_1ifting_surface() for used method.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.
initialize(Q)
Perform any one-time initialization run at instantiation.

86 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

* discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.cd_compressibility module

Compressibility drag computation.

class fastoad.models.aerodynamics.components.cd_compressibility.CdCompressibility (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of drag increment due to compressibility effects.
Formula from §4.2.4 of [DCAC14]. This formula can be used for aircraft before year 2000.

Earlier aircraft have more optimized wing profiles that are expected to limit the compress-
ibility drag below 2 drag counts. Until a better model can be provided, the variable tun-
ing:aerodynamics:aircraft:cruise: CD:compressibility:characteristic_mach_increment allows to move the
characteristic Mach number, thus moving the CD divergence to higher Mach numbers.

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters

* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

1.6. fastoad 87

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None)—If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.cd_trim module

Computation of trim drag.

class fastoad.models.aerodynamics.components.cd_trim.CdTrim(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of trim drag.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
e inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.compute_low_speed_aero module

Computation of CL characteristics at low speed.

class fastoad.models.aerodynamics.components.compute_low_speed_aero.ComputeAerodynamicsLowSpeed(**kwargs
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes CL gradient and CL at low speed.
CL gradient from [Ray99] Eq 12.6

88 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

* discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.compute_max_cl_landing module

Computation of max CL in landing conditions.

class fastoad.models.aerodynamics.components.compute_max_cl_landing.ComputeMaxClLanding(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of max CL in landing conditions.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
e inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

1.6. fastoad 89

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.compute_polar module

Computation of CL and CD for whole aircraft.

class fastoad.models.aerodynamics.components.compute_polar.ComputePolar (**kwargs)

Bases: openmdao.core.explicitcomponent.ExplicitComponent
Computation of CL and CD for whole aircraft.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initializeQ
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.compute_polar.get_optimum_ClCd(CICd)

90

Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.aerodynamics.components.compute_reynolds module

Computation of Reynolds number

class fastoad.models.aerodynamics.components.compute_reynolds.ComputeReynolds (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of Reynolds number
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.high_lift_aero module

Computation of lift and drag increment due to high-lift devices

class fastoad.models.aerodynamics.components.high_lift_aero.ComputeDeltaHighLift(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Provides lift and drag increments due to high-lift devices
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initializeQ
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 91

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is

called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.components.initialize_cl module

Initialization of CL vector.

class fastoad.models.aerodynamics.components.initialize_cl.InitializeClPolar (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Initialization of CL vector.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is

called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

92 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.aerodynamics.components.oswald module

Computation of Oswald coefficient

class fastoad.models.aerodynamics.components.oswald.InducedDragCoefficient (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes the coeflicient that should be multiplied by CL**2 to get induced drag.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is

called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

class fastoad.models.aerodynamics.components.oswald.OswaldCoefficient (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes Oswald efficiency number
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initializeQ
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is

called after all size/shape information is known for all variables.

1.6. fastoad

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

fastoad.models.aerodynamics.external package

Subpackages

fastoad.models.aerodynamics.external.xfoil package
Subpackages
fastoad.models.aerodynamics.external.xfoil.xfoil699 package
Module contents

Submodules
fastoad.models.aerodynamics.external.xfoil.xfoil_polar module

This module launches XFOIL computations

class fastoad.models.aerodynamics.external.xfoil.xfoil_polar.XfoilPolar (**kwargs)
Bases: openmdao.components.external_code_comp.ExternalCodeComp

Runs a polar computation with XFOIL and returns the 2D max lift coefficient
Intialize the ExternalCodeComp component.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

compute (inputs, outputs)
Run this component.

User should call this method from their overriden compute method.

94 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Parameters
¢ inputs (Vector) — Unscaled, dimensional input variables read via inputs[key].

* outputs (Vector) — Unscaled, dimensional output variables read via outputs[key].

Module contents

Module for OpenMDAO-embedded XFOIL

Module contents
Submodules
fastoad.models.aerodynamics.aerodynamics_high_speed module

Computation of aerodynamic polar in cruise conditions.

class fastoad.models.aerodynamics.aerodynamics_high_speed.AerodynamicsHighSpeed (**kwargs)
Bases: openmdao. core.group.Group

Computes aerodynamic polar of the aircraft in cruise conditions.
Drag contributions of each part of the aircraft are computed though analytical models.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.models.aerodynamics.aerodynamics_landing module

Aero computation for landing phase

class fastoad.models.aerodynamics.aerodynamics_landing.AerodynamicsLanding (**kwargs)
Bases: openmdao . core.group.Group

Computes aerodynamic characteristics at landing.
* Computes CL and CD increments due to high-lift devices at landing.

* Computes maximum CL of the aircraft in landing conditions.

1.6. fastoad 95

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

Maximum 2D CL without high-lift is computed using XFoil (or provided as input if option use_xfoil is set to
False). 3D CL is deduced using sweep angle.

Contribution of high-lift devices is modelled according to their geometry (span and chord ratio) and their deflec-
tion angles.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

class fastoad.models.aerodynamics.aerodynamics_landing.ComputeMachReynolds (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Mach and Reynolds computation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

class fastoad.models.aerodynamics.aerodynamics_landing.Compute3DMaxCL (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

96 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Computes 3D max CL from 2D CL (XFOIL-computed) and sweep angle
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.aerodynamics.aerodynamics_low_speed module

Computation of aerodynamic polar in low speed conditions.

class fastoad.models.aerodynamics.aerodynamics_low_speed.AerodynamicsLowSpeed(**kwargs)

Bases: openmdao . core.group.Group
Models for low speed aerodynamics
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

1.6. fastoad 97

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

fastoad.models.aerodynamics.aerodynamics_takeoff module

Computation of aerodynamic characteristics at takeoff.

class fastoad.models.aerodynamics.aerodynamics_takeoff.AerodynamicsTakeoff (**kwargs)
Bases: openmdao . core.group.Group

Computes aerodynamic characteristics at takeoff.
* Computes CL and CD increments due to high-lift devices at takeoft.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.models.aerodynamics.constants module

Constants for aerodynamics models.

class fastoad.models.aerodynamics.constants.PolarType (value=<no_arg>, names=None,
module=None, type=None, start=1I,
boundary=None)
Bases: aenum. Enum

Enumeration of polar types to be computed.
HIGH_SPEED = 'high_speed'
LOW_SPEED = 'low_speed'

"takeoff’

TAKEOFF
LANDING

'landing’

Module contents

fastoad.models.geometry package

Subpackages
fastoad.models.geometry.geom_components package

Subpackages

98 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

fastoad.models.geometry.geom_components.fuselage package
Submodules
fastoad.models.geometry.geom_components.fuselage.compute_cnbeta_fuselage module

Estimation of yawing moment due to sideslip

class fastoad.models.geometry.geom_components.fuselage.compute_cnbeta_fuselage.ComputeCnBetaFuselage (**)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Yawing moment due to sideslip estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
e inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.fuselage.compute_fuselage module

Estimation of geometry of fuselase part A - Cabin (Commercial)

class fastoad.models.geometry.geom_components.fuselage.compute_fuselage.ComputeFuselageGeometryBasic(**
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Geometry of fuselage part A - Cabin (Commercial) estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 99

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

class fastoad.models.geometry.geom_components.fuselage.compute_fuselage.ComputeFuselageGeometryCabinSiz
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Geometry of fuselage part A - Cabin (Commercial) estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

100 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Module contents

Estimation of fuselage geometry

fastoad.models.geometry.geom_components.ht package

Subpackages

fastoad.models.geometry.geom_components.ht.components package

Submodules
fastoad.models.geometry.geom_components.ht.components.compute_ht_chords module

Estimation of horizontal tail chords and span

class fastoad.models.geometry.geom_components.ht.components.compute_ht_chords.ComputeHTChord (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Horizontal tail chords and span estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 101

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.geometry.geom_components.ht.components.compute_ht_cl_alpha module

Estimation of horizontal tail lift coefficient

class fastoad.models.geometry.geom_components.ht.components.compute_ht_cl_alpha.ComputeHTClalpha(**kwarg
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Horizontal tail lift coefficient estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.ht.components.compute_ht_mac module

Estimation of horizontal tail mean aerodynamic chords

class fastoad.models.geometry.geom_components.ht.components.compute_ht_mac.ComputeHTMAC (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Horizontal tail mean aerodynamic chord estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

102 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.ht.components.compute_ht_sweep module

Estimation of horizontal tail sweeps

class fastoad.models.geometry.geom_components.ht.components.compute_ht_sweep.ComputeHTSweep (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Horizontal tail sweeps estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 103

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Module contents

Estimation of horizontal tail geometry (components)

Submodules
fastoad.models.geometry.geom_components.ht.compute_horizontal_tail module

Estimation of geometry of horizontal tail

class fastoad.models.geometry.geom_components.ht.compute_horizontal_tail.ComputeHorizontalTailGeometry(
Bases: openmdao.core.group.Group

Horizontal tail geometry estimation
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents

Estimation of horizontal tail geometry (global)

fastoad.models.geometry.geom_components.nacelle_pylons package
Submodules
fastoad.models.geometry.geom_components.nacelle_pylons.compute_nacelle_pylons module

Estimation of nacelle and pylon geometry

class fastoad.models.geometry.geom_components.nacelle_pylons.compute_nacelle_pylons.ComputeNacelleAndPy
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Nacelle and pylon geometry estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

104 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

* discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

Estimation of nacelle and pylons

fastoad.models.geometry.geom_components.vt package

Subpackages

fastoad.models.geometry.geom_components.vt.components package

Submodules
fastoad.models.geometry.geom_components.vt.components.compute_vt_chords module

Estimation of vertical tail chords and span

class fastoad.models.geometry.geom_components.vt.components.compute_vt_chords.ComputeVTChords (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Vertical tail chords and span estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 105

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.vt.components.compute_vt_clalpha module

Estimation of vertical tail lift coefficient

class fastoad.models.geometry.geom_components.vt.components.compute_vt_clalpha.ComputeVIClalpha (**kwargs
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Vertical tail lift coefficient estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

106 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.geometry.geom_components.vt.components.compute_vt_distance module

Estimation of vertical tail distance

class fastoad.models.geometry.geom_components.vt.components.compute_vt_distance.ComputeVIDistance (**kwa
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Vertical tail distance estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
 inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.vt.components.compute_vt mac module

Estimation of vertical tail mean aerodynamic chords

class fastoad.models.geometry.geom_components.vt.components.compute_vt_mac.ComputeVIMAC(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Vertical tail mean aerodynamic chord estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

1.6. fastoad 107

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.vt.components.compute vt sweep module

Estimation of vertical tail sweeps

class fastoad.models.geometry.geom_components.vt.components.compute_vt_sweep.ComputeVISweep (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Vertical tail sweeps estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

108 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Module contents

Estimation of vertical tail geometry (components)

Submodules
fastoad.models.geometry.geom_components.vt.compute_vertical_tail module

Estimation of geometry of vertical tail

class fastoad.models.geometry.geom_components.vt.compute_vertical_tail.ComputeVerticalTailGeometry (**kw
Bases: openmdao. core.group.Group

Vertical tail geometry estimation
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents

Estimation of vertical tail geometry (global)

fastoad.models.geometry.geom_components.wing package

Subpackages

fastoad.models.geometry.geom_components.wing.components package

Submodules
fastoad.models.geometry.geom_components.wing.components.compute_b_50 module

Estimation of wing B50

class fastoad.models.geometry.geom_components.wing.components.compute_b_50.ComputeB50 (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing B50 estimation

Store some bound methods so we can detect runtime overrides.

1.6. fastoad 109

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_cl_alpha module

Estimation of wing lift coefficient

class fastoad.models.geometry.geom_components.wing.components.compute_cl_alpha.ComputeCLalpha(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing lift coefficient estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

110 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_I1_I4 module

Estimation of wing chords (11 and 14)

class fastoad.models.geometry.geom_components.wing.components.compute_11_14.ComputeL1lAndL4Wing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing chords (11 and 14) estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_I2_I3 module

Estimation of wing chords (12 and 13)

class fastoad.models.geometry.geom_components.wing.components.compute_12_13.ComputeL2AndL3Wing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing chords (12 and 13) estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

1.6. fastoad 111

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_mac_wing module

Estimation of wing mean aerodynamic chord

class fastoad.models.geometry.geom_components.wing.components.compute_mac_wing.ComputeMACWing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing mean aerodynamic chord estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup(
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

112 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.geometry.geom_components.wing.components.compute_mfw module

Estimation of max fuel weight

class fastoad.models.geometry.geom_components.wing.components.compute_mfw.ComputeMFW(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Max fuel weight estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_sweep_wing module

Estimation of wing sweeps

class fastoad.models.geometry.geom_components.wing.components.compute_sweep_wing.ComputeSweepWing (**kwa
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing sweeps estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

1.6. fastoad 113

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_toc_wing module

Estimation of wing ToC

class fastoad.models.geometry.geom_components.wing.components.compute_toc_wing.ComputeToCWing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing ToC estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

114 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.geometry.geom_components.wing.components.compute_wet_area_wing module

Estimation of wing wet area

class fastoad.models.geometry.geom_components.wing.components.compute_wet_area_wing.ComputeWetAreaWing(
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing wet area estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_x_wing module

Estimation of wing Xs

class fastoad.models.geometry.geom_components.wing.components.compute_x_wing.ComputeXWing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing Xs estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

1.6. fastoad 115

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.geometry.geom_components.wing.components.compute_y_wing module

Estimation of wing Ys (sections span)

class fastoad.models.geometry.geom_components.wing.components.compute_y_wing.ComputeYWing (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing Ys estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

116 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Module contents

Estimation of wing geometry (components)

Submodules
fastoad.models.geometry.geom_components.wing.compute_wing module

Estimation of wing geometry

class fastoad.models.geometry.geom_components.wing.compute_wing.ComputeWingGeometry (**kwargs)
Bases: openmdao.core.group.Group

Wing geometry estimation
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents

Estimation of wing (global)

Submodules
fastoad.models.geometry.geom_components.compute_wetted_area module

Estimation of total aircraft wet area

class fastoad.models.geometry.geom_components.compute_wetted_area.ComputeWettedArea(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Total aircraft wet area estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 117

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

Estimation of geometry components

fastoad.models.geometry.profiles package
Subpackages

Submodules
fastoad.models.geometry.profiles.profile module

Management of 2D wing profiles

class fastoad.models.geometry.profiles.profile.Coordinates2D(x, y)
Bases: tuple

Create new instance of Coordinates2D(x, y)

property x
Alias for field number O

property y
Alias for field number 1

class fastoad.models.geometry.profiles.profile.Profile(chord_length: float = 0.0)
Bases: object

Class for managing 2D wing profiles :param chord_length: :param x: :param y:

chord_length: float
in meters

property thickness_ratio: float
thickness-to-chord ratio

118 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

set_points(x: Sequence, z: Sequence, keep_chord_length: bool = True, keep_relative_thickness: bool =
True)
Sets points of the 2D profile.

Provided points are expected to be in order around the profile (clockwise or anti-clockwise).
Parameters
* X —in meters
* Z —in meters
¢ keep_relative_thickness —
¢ keep_chord_length —

get_mean_line() — pandas.core.frame.DataFrame
Point set of mean line of the profile.

DataFrame keys are ‘x” and ‘z’, given in meters.

get_relative_thickness() — pandas.core.frame.DataFrame
Point set of relative thickness of the profile.

DataFrame keys are ‘x’ and ‘thickness’ and are relative to chord_length. ‘x’ is from 0. to 1.

get_upper_side() — pandas.core.frame.DataFrame
Point set of upper side of the profile.

DataFrame keys are ‘x’ and ‘z’, given in meters.

get_lower_side() — pandas.core.frame.DataFrame
Point set of lower side of the profile.

DataFrame keys are ‘x” and ‘z’, given in meters.

get_sides() — pandas.core.frame.DataFrame
Point set of the whole profile

Points are given from trailing edge to trailing edge, starting by upper side.

fastoad.models.geometry.profiles.profile_getter module

Airfoil reshape function

fastoad.models.geometry.profiles.profile_getter.get_profile(file_name: str = 'BACJ.txt’,
chord_length=1.0,
thickness_ratio=None) — fas-
toad.models.geometry.profiles.profile. Profile
Reads profile from indicated resource file and returns it after resize

Parameters
» file_name — name of resource
e chord_length — set to None to get original chord length
* thickness_ratio—

Returns the Profile instance

1.6. fastoad 119

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

Module contents

Management of wing profiles

Submodules
fastoad.models.geometry.compute_aero_center module

Estimation of aerodynamic center

class fastoad.models.geometry.compute_aero_center.ComputeAeroCenter (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Aerodynamic center estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None)—If not None, dict containing discrete output
values.

fastoad.models.geometry.constants module

Constants for geometry submodels.

120 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.geometry.geometry module

FAST - Copyright (c) 2016 ONERA ISAE

class fastoad.models.geometry.geometry.Geometry (**kwargs)
Bases: openmdao. core.group.Group

Computes geometric characteristics of the (tube-wing) aircraft:
* fuselage size can be computed from payload requirements
» wing dimensions are computed from global parameters (area, taper ratio...)
* tail planes are dimensioned from HQ requirements

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

initializeQ
Perform any one-time initialization run at instantiation.

setup(
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents

Estimation of global geometry components

fastoad.models.handling_qualities package

Subpackages

fastoad.models.handling_qualities.tail_sizing package

Submodules
fastoad.models.handling_qualities.tail_sizing.compute_ht_area module

Estimation of horizontal tail area

class fastoad.models.handling_qualities.tail_sizing.compute_ht_area.ComputeHTArea(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes area of horizontal tail plane

Area is computed to fulfill aircraft balance requirement at rotation speed

1.6. fastoad 121

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

* discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.handling_qualities.tail_sizing.compute_tail_areas module

Computation of tail areas w.r.t. HQ criteria

class fastoad.models.handling qualities.tail_sizing.compute_tail_areas.ComputeTailAreas(**kwargs)
Bases: openmdao.core.group.Group

Computes areas of vertical and horizontal tail.
* Horizontal tail area is computed so it can balance pitching moment of aircraft at rotation speed.
* Vertical tail area is computed so aircraft can have the CNbeta in cruise conditions

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

122 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

fastoad.models.handling_qualities.tail_sizing.compute_vt_area module

Estimation of vertical tail area

class fastoad.models.handling_qualities.tail_sizing.compute_vt_area.ComputeVTArea(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes area of vertical tail plane
Area is computed to fulfill lateral stability requirement (with the most aft CG) as stated in :cite:raymer:1992.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

» discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents
Submodules
fastoad.models.handling_qualities.compute_static_margin module

Estimation of static margin

class fastoad.models.handling_qualities.compute_static_margin.ComputeStaticMargin(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of static margin i.e. difference between CG ratio and neutral point.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.
initialize()
Perform any one-time initialization run at instantiation.

1.6. fastoad 123

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

* discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

fastoad.models.loops package

Subpackages

Submodules

fastoad.models.loops.compute_wing_area module

Computation of wing area

class fastoad.models.loops.compute_wing_area.ComputeWingArea (**kwargs)

Bases: openmdao.core.group.Group
Computes needed wing area for:

* having enough lift at required approach speed

* being able to load enough fuel to achieve the sizing mission
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

124

Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.models.loops.compute_wing_position module

Computation of wing position

class fastoad.models.loops.compute_wing_position.ComputeWingPosition(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes the wing position for a static margin target
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

fastoad.models.performances package
Subpackages
fastoad.models.performances.mission package
Subpackages

fastoad.models.performances.mission.mission_definition package

1.6. fastoad 125

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Subpackages

Submodules

fastoad.models.performances.mission.mission_definition.exceptions module

Exceptions for mission definition.

exception fastoad.models.performances.mission.mission_definition.exceptions.
FastMissionFileMissingMissionNameError

Bases: fastoad.exceptions.FastError

Raised when a mission definition is used without specifying the mission name.

fastoad.models.performances.mission.mission_definition.mission_builder module

Mission generator.

class fastoad.models.performances.mission.mission_definition.mission_builder.MissionBuilder (imission_defini

Union[str,
fas-

toad.models.pe
*

propul-

sion:

Op-
tional[fastoad.

None,

ref-

er-
ence_area:
Op-
tional[float]

None)
Bases: object

This class builds and computes a mission from a provided definition.
Parameters
» mission_definition - as file path or MissionDefinition instance

* propulsion - if not provided, the property propulsion must be set before calling
build()

» reference_area - if not provided, the property reference_area must be set before
calling build()

property definition:
fastoad.models.performances.mission.mission_definition.schema.MissionDefinition
The mission definition instance.

If it is set as a file path, then the matching file will be read and interpreted.

property propulsion: fastoad.model_base.propulsion.IPropulsion
Propulsion model for performance computation.

126

Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#object

FAST-OAD, Release unknown

property reference_area: float
Reference area for aerodynamic polar.

build(inputs: Optional[Mapping] = None, mission_name: Optional(str] = None) —
Jfastoad.models.performances.mission.base.FlightSequence
Builds the flight sequence from definition file.

Parameters

e inputs - if provided, any input parameter that is a string which matches a key of
inputs will be replaced by the corresponding value

* mission_name — mission name (can be omitted if only one mission is defined)
Returns

get_route_ranges (inputs: Optional[Mapping] = None, mission_name: Optional[str] = None) —
List[float]

Parameters

e inputs - if provided, any input parameter that is a string which matches a key of
inputs will be replaced by the corresponding value

* mission_name — mission name (can be omitted if only one mission is defined)
Returns list of flight ranges for each element of the flight sequence that is a route

get_reserve(flight_points: pandas.core.frame.DataFrame, mission_name: Optional[str] = None) — float
Computes the reserve fuel according to definition in mission input file.

Parameters

e flight_points - the dataframe returned by compute_from() method of the instance
returned by build()

¢ mission_name — mission name (can be omitted if only one mission is defined)
Returns the reserve fuel mass in kg, or 0.0 if no reserve is defined.

get_input_variables (mission_name=None) — Dict[str, str]
Identify variables for a defined mission.

Parameters mission_name — mission name (can be omitted if only one mission is defined)
Returns a dict where key, values are names, units.

get_unique_mission_name() — str
Provides mission name if only one mission is defined in mission file.

Returns the mission name, if only one mission is defined

Raises FastMissionFileMissingMissionNameError — if several missions are defined in
mission file

1.6.

fastoad 127

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.models.performances.mission.mission_definition.schema module

Schema for mission definition files.

class fastoad.models.performances.mission.mission_definition.schema.MissionDefinition(file_path:
Op-
tional[Union/[str,
os.PathLike]]

None)
Bases: dict

Class for reading a mission definition from a YAML file.
Path of YAML file should be provided at instantiation, or in Ioad().
Parameters file_path — path of YAML file to read.

load (file_path: Union[str, os.PathLike])
Loads a mission definition from provided file path.

Any existing definition will be overwritten.

Parameters file_path — path of YAML file to read.

Module contents

fastoad.models.performances.mission.openmdao package
Subpackages

Submodules
fastoad.models.performances.mission.openmdao.link_mtow module

OpenMDAO component for computation of sizing mission.

class fastoad.models.performances.mission.openmdao.link_mtow.ComputeMTOW (output_name=None,
input_names=None,
vec_size=1,
length=1, val=1.0,
scal-
ing_factors=None,
**kwargs)

Bases: openmdao . components.add_subtract_comp.AddSubtractComp

Computes MTOW from OWE, design payload and consumed fuel in sizing mission.
Allow user to create an addition/subtracton system with one-liner.
Parameters

* output_name (str) — (required) name of the result variable in this component’s names-
pace.

e input_names (iterable of str) — (required) names of the input variables for this
system

128 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/os.html#os.PathLike
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/os.html#os.PathLike
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

» vec_size (int)- Length of the first dimension of the input and output vectors (i.e number
of rows, or vector length for a 1D vector) Default is 1

* length (int) — Length of the second dimension of the input and ouptut vectors (i.e.
number of columns) Default is 1 which results in input/output vectors of size (vec_size,)

» scaling_factors (iterable of numeric) — Scaling factors to apply to each input.
Use [1,1,...] for addition, [1,-1,...] for subtraction Must be same length as input_names
Default is None which results in a scaling factor of 1 on each input (element-wise addition)

e val (float or list or tuple or ndarray)- The initial value of the variable being
added in user-defined units. Default is 1.0.

o **kwargs (str) — Any other arguments to pass to the addition system (same as
add_output method for ExplicitComponent) Examples include units (str or None), desc
(str)

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

fastoad.models.performances.mission.openmdao.mission module

OpenMDAO component for time-step computation of missions.

class fastoad.models.performances.mission.openmdao.mission.Mission(**kwargs)
Bases: openmdao.core.group.Group

Computes a mission as specified in mission input file.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

property flight_points: pandas.core.frame.DataFrame
Dataframe that lists all computed flight point data.

class fastoad.models.performances.mission.openmdao.mission.MissionComponent (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes a mission as specified in mission input file
Options:

e propulsion_id: (mandatory) the identifier of the propulsion wrapper.

1.6. fastoad 129

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

* out_file: if provided, a csv file will be written at provided path with all computed flight points.
* mission_wrapper: the MissionWrapper instance that defines the mission.

* use_initializer_iteration: During first solver loop, a complete mission computation can fail or
consume useless CPU-time. When activated, this option ensures the first iteration is done using
a simple, dummy, formula instead of the specified mission. Set this option to False if you do
expect this model to be computed only once.

* is_sizing: if True, TOW will be considered equal to MTOW and mission payload will be
considered equal to design payload.

initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.performances.mission.openmdao.mission_wrapper module

Mission wrapper.

class fastoad.models.performances.mission.openmdao.mission_wrapper.MissionWrapper (*args,
**kwargs)
Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
MissionBuilder

Wrapper around MissionBuilder for using with OpenMDAO.
This class builds and computes a mission from a provided definition.
Parameters
* mission_definition - as file path or MissionDefinition instance

e propulsion - if not provided, the property propulsion must be set before calling
build(

» reference_area - if not provided, the property reference_area must be set before
calling build)

130 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup (component: openmdao.core.explicitcomponent. ExplicitComponent, mission_name: Optional[str] =
None)
To be used during setup() of provided OpenMDAO component.

It adds input and output variables deduced from mission definition file.
Parameters
e component — the OpenMDAO component where the setup is done.
¢ mission_name — mission name (can be omitted if only one mission is defined)

compute (inputs: openmdao.vectors.vector.Vector, outputs: openmdao.vectors.vector.Vector,
start_flight_point: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
To be used during compute() of an OpenMDAO component.

Builds the mission from input file, and computes it. outputs vector is filled with duration, burned fuel and
covered ground distance for each part of the flight.

Parameters

¢ inputs — the input vector of the OpenMDAO component

* outputs — the output vector of the OpenMDAO component

e start_flight_point — the starting flight point just after takeoff
Returns a pandas DataFrame where columns names match fields of F1ightPoint

get_reserve_variable_name() — str

Returns the name of OpenMDAO variable for fuel reserve. This name is among the declared
outputs in setup().

Module contents

fastoad.models.performances.mission.segments package

Subpackages

Submodules
fastoad.models.performances.mission.segments.altitude_change module

Classes for climb/descent segments.

1.6. fastoad 131

https://docs.python.org/3.7/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.altitude_change.AltitudeChangeSegment (farget:
fas-
toad.model_base.f]
propul-
sion:
fas-
toad.model_base.p
po-
lar:
fas-
toad.models.perfor
ref-
er-
ence_area:
float,
time_step:

float

2.0,

en-

gine_setting:

fas-
toad.constants.Eng

En-

gi-

ne-

Set-

ting. CLIMB,
al-

ti-
tude_bounds:
tu-

ple

(_

500.0,
40000.0),
mach_bounds:
tu-

ple

(0.0,

5.0),

name:

ter-

rupt_if_getting_fur
bool

True,
thrust_rate:

132 Chapter 1. Contentsj .

1.0,
max-

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

Computes a flight path segment where altitude is modified with constant speed.

Note: Setting speed

Constant speed may be:
* constant true airspeed (TAS)
* constant equivalent airspeed (EAS)
* constant Mach number

Target should have '"constant" as definition for one parameter among true_airspeed,
equivalent_airspeed or mach. All computed flight points will use the corresponding start value.
The two other speed values will be computed accordingly.

If not “constant” parameter is set, constant TAS is assumed.

Note: Setting target
Target can be an altitude, or a speed:
* Target altitude can be a float value (in meters), or can be set to:

— OPTIMAL_ALTITUDE: in that case, the target altitude will be the altitude where maximum lift/drag
ratio is achieved for target speed, depending on current mass.

— OPTIMAL_FLIGHT_LEVEL: same as above, except that altitude will be rounded to the nearest flight
level (multiple of 100 feet).

* For a speed target, as explained above, one value TAS, EAS or Mach must be "constant". One of the
two other ones can be set as target.

In any case, the achieved value will be capped so it respects maximum_f1light_level.

time_step: float = 2.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

maximum_flight_level: float = 500.0
The maximum allowed flight level (i.e. multiple of 100 feet).

OPTIMAL_ALTITUDE = 'optimal_altitude’
Using this value will tell to target the altitude with max lift/drag ratio.

OPTIMAL_FLIGHT_LEVEL = 'optimal_flight_level'
Using this value will tell to target the nearest flight level to altitude with max lift/drag ratio.

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start - the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for fime and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

1.6. fastoad 133

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments.base module

Base classes for simulating flight segments.

class fastoad.models.performances.mission.segments.base.SegmentDefinitions(value=<no_arg>,
names=None,
module=None,
type=None,
start=1,
boundary=None)
Bases: aenum. Enum

Class that associates segment names (mission file keywords) and their implementation.

classmethod add_segment (segment_name: str, segment_class: type)
Adds a segment definition.

Parameters
* segment_name — segment names (mission file keyword)
* segment_class — segment implementation (derived of F1ightSegment)

classmethod get_segment_class(segment_name) — type
Provides the segment implementation for provided name.

Parameters segment_name —
Returns the segment implementation (derived of F1ightSegment)

altitude_change = <class 'fastoad.models.performances.mission.segments.
altitude_change.AltitudeChangeSegment'>

optimal_cruise = <class
'fastoad.models.performances.mission.segments.cruise.OptimalCruiseSegment'>

cruise = <class
'fastoad.models.performances.mission.segments.cruise.ClimbAndCruiseSegment'>

breguet = <class
'fastoad.models.performances.mission.segments.cruise.BreguetCruiseSegment'>

taxi = <class 'fastoad.models.performances.mission.segments.taxi.TaxiSegment'>

134 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#type
https://docs.python.org/3.7/library/functions.html#type

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.base.FlightSegment (target: fas-
toad.model_base.flight_point.FlightPoint,
propulsion: fas-
toad.model_base.propulsion.IPropulsion,
polar: fas-
toad.models.performances.mission.polar.Po
reference_area: float,
time_step: float = 0.2,
engine_setting: fas-
toad.constants.EngineSetting
= EngineSetting. CLIMB,
altitude_bounds: tuple =
(- 500.0, 40000.0),
mach_bounds: tuple =
(0.0, 5.0), name: str =",

inter-
rupt_if_getting_further_from_target:
bool = True)

Bases: fastoad.models.performances.mission.base.IFlightPart
Base class for flight path segment.
As a dataclass, attributes can be set at instantiation.

When subclassing this class, the attribute “mission_file_keyword” can be set, so that the segment can be used in
mission file definition with this keyword:

>>> class NewSegment(FlightSegment, mission_file_keyword="new_segment")
>>>

Then in mission definition:

phases:
my_phase:
parts:
- segment: new_segment

target: fastoad.model_base.flight_point.FlightPoint
A FlightPoint instance that provides parameter values that should all be reached at the end of
compute_from(). Possible parameters depend on the current segment. A parameter can also be set
to CONSTANT_VALUE to tell that initial value should be kept during all segment.

propulsion: fastoad.model_base.propulsion.IPropulsion
A TPropulsion instance that will be called at each time step.

polar: fastoad.models.performances.mission.polar.Polar
The Polar instance that will provide drag data.

reference_area: float
The reference area, in m**2.

time_step: float = 0.2
Used time step for computation (actual time step can be lower at some particular times of the flight path).

engine_setting: fastoad.constants.EngineSetting = 2
The EngineSetting value associated to the segment. Can be used in the propulsion model.

altitude_bounds: tuple = (-500.0, 40000.0)

1.6. fastoad 135

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple

FAST-OAD, Release unknown

Minimum and maximum authorized altitude values. If computed altitude gets beyond these limits, com-
putation will be interrupted and a warning message will be issued in logger.

mach_bounds: tuple = (0.0, 5.0)
Minimum and maximum authorized mach values. If computed Mach gets beyond these limits, computation
will be interrupted and a warning message will be issued in logger.

name: str =
The name of the current flight sequence.

interrupt_if getting_further_from_target: bool = True
If True, computation will be interrupted if a parameter stops getting closer to target between two iterations
(which can mean the provided thrust rate is not adapted).

CONSTANT_VALUE = 'constant'
Using this value will tell to keep the associated parameter constant.

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for fime and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

compute_next_flight_point (flight_points: List[fastoad.model_base.flight_point.FlightPoint], time_step:
float) — fastoad.model_base.flight_point.FlightPoint
Computes time, altitude, speed, mass and ground distance of next flight point.

Parameters

e flight_points — previous flight points

* time_step — time step for computing next point
Returns the computed next flight point

complete_flight_point (flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes data for provided flight point.

Assumes that it is already defined for time, altitude, mass, ground distance and speed (TAS, EAS, or Mach).

Parameters flight_point — the flight point that will be completed in-place

136 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.base.ManualThrustSegment (target: fas-
toad.model_base.flight_point.Flight
propulsion: fas-
toad.model_base.propulsion.IPropu
polar: fas-
toad.models.performances.mission.,
reference_area:
float, time_step:
float = 0.2,
engine_setting:
fas-
toad.constants.EngineSetting
= EngineSet-
ting. CLIMB,
altitude_bounds:
tuple = (- 500.0,
40000.0),
mach_bounds:
tuple = (0.0, 5.0),
name: str =",
inter-
rupt_if _getting_further_from_targei
bool = True,
thrust_rate: float
=1.0)

Bases: fastoad.models.performances.mission.segments.base.FlightSegment, abc.ABC

Base class for computing flight segment where thrust rate is imposed.
Variables thrust_rate — used thrust rate. Can be set at instantiation using a keyword argument.
thrust_rate: float = 1.0

class fastoad.models.performances.mission.segments.base.RegulatedThrustSegment (*args,
*rkwargs)
Bases: fastoad.models.performances.mission.segments.base.FlightSegment, abc.ABC

Base class for computing flight segment where thrust rate is adjusted on drag.

time_step: float = 60.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

1.6. fastoad 137

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.base.FixedDurationSegment (farget: fas-
toad.model_base.flight_point.Fligl
propulsion: fas-
toad.model_base.propulsion.IProp
polar: fas-
toad.models.performances.missior
reference_area:
float, time_step:
float = 60.0,
engine_setting:
fas-
toad.constants.EngineSetting
= EngineSet-
ting. CLIMB,
alti-
tude_bounds:
tuple = (- 500.0,
40000.0),
mach_bounds:
tuple = (0.0,
5.0), name: str
=", inter-
rupt_if_getting_further_from_targ
bool = True)

Bases: fastoad.models.performances.mission.segments.base.FlightSegment, abc.ABC

Class for computing phases where duration is fixed.

Target duration is provide as target.time. When using compute_from(), if start.time is not 0, end time will be
start.time + target.time.

time_step: float = 60.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for #ime and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

fastoad.models.performances.mission.segments.cruise module

Classes for simulating cruise segments.

138 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.cruise.CruiseSegment (target: fas-
toad.model_base.flight_point.FlightPoint
propulsion: fas-
toad.model_base.propulsion.IPropulsion,
polar: fas-
toad.models.performances.mission.polar.
reference_area: float,
time_step: float =
60.0, engine_setting:
fas-
toad.constants.EngineSetting

EngineSetting. CLIMB,
altitude_bounds: tuple
= (- 500.0, 40000.0),
mach_bounds: tuple =
(0.0, 5.0), name: str =
" inter-
rupt_if_getting_further_from_target:
bool = True)

Bases: fastoad.models.performances.mission.segments.base.RegulatedThrustSegment

Class for computing cruise flight segment at constant altitude and speed.

Mach is considered constant, equal to Mach at starting point. Altitude is constant. Target is a specified
ground_distance. The target definition indicates the ground_distance to be covered during the segment, inde-
pendently of the initial value.

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

target: fastoad.model_base.flight_point.FlightPoint
A FlightPoint instance that provides parameter values that should all be reached at the end of
compute_from(). Possible parameters depend on the current segment. A parameter can also be set
to CONSTANT_VALUE to tell that initial value should be kept during all segment.

propulsion: fastoad.model_base.propulsion.IPropulsion
A TPropulsion instance that will be called at each time step.

polar: fastoad.models.performances.mission.polar.Polar
The Polar instance that will provide drag data.

reference_area: float
The reference area, in m**2.

1.6. fastoad 139

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.cruise.OptimalCruiseSegment (target: fas-
toad.model_base.flight_point.Fl
propulsion:
fas-
toad.model_base.propulsion.IPr
polar: fas-
toad.models.performances.miss
refer-
ence_area:
float,
time_step:
float = 60.0,
en-
gine_setting:
fas-
toad.constants.EngineSetting
= EngineSet-
ting. CLIMB,
alti-
tude_bounds:
tuple = (-
500.0,
40000.0),
mach_bounds:
tuple = (0.0,
5.0), name:
str=", inter-
rupt_if_getting_further_from_ta
bool = True)

Bases: fastoad.models.performances.mission.segments.cruise.CruiseSegment

Class for computing cruise flight segment at maximum lift/drag ratio.

Altitude is set at every point to get the optimum CL according to current mass. Target is a specified
ground_distance. The target definition indicates the ground_distance to be covered during the segment, inde-
pendently of the initial value. Target should also specify a speed parameter set to “constant”, among mach,
true_airspeed and equivalent_airspeed. If not, Mach will be assumed constant.

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

target: fastoad.model_base.flight_point.FlightPoint
A FlightPoint instance that provides parameter values that should all be reached at the end of
compute_from(). Possible parameters depend on the current segment. A parameter can also be set
to CONSTANT_VALUE to tell that initial value should be kept during all segment.

propulsion: fastoad.model_base.propulsion.IPropulsion
A TPropulsion instance that will be called at each time step.

140 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

polar: fastoad.models.performances.mission.polar.Polar
The Polar instance that will provide drag data.

reference_area: float
The reference area, in m**2.

class fastoad.models.performances.mission.segments.cruise.ClimbAndCruiseSegment (farget: fas-

Bases: fastoad.models.performances.mission.segments.cruise.CruiseSegment

Class for computing cruise flight segment at constant altitude.

toad.model_base.flight_point.I
propulsion:

fas-
toad.model_base.propulsion.Il
polar: fas-
toad.models.performances.mis

refer-
ence_area:
float,
time_step:
float = 60.0,
en-
gine_setting:
fas-

toad.constants.EngineSetting

EngineSet-

ting. CLIMB,

alti-
tude_bounds:
tuple = (-

500.0,

40000.0),
mach_bounds:
tuple =

(0.0, 5.0),

name: str =

", inter-
rupt_if_getting_further_from_
bool = True,
climb_segment:
Op-
tional[fastoad.models.perform
= None,

maxi-
mum_flight_level:
float =

500.0)

Target is a specified ground_distance. The target definition indicates the ground_distance to be covered during
the segment, independently of the initial value. Target should also specify a speed parameter set to “constant”,

among mach, true_airspeed and equivalent_airspeed. If not, Mach will be assumed constant.

Target altitude can also be set to OPTIMAL_FLIGHT_LEVEL. In that case, the cruise will be preceded by a climb

segment and climb_segment must be set at instantiation.

(Target ground distance will be achieved by the sum of ground distances covered during climb and cruise)

1.6. fastoad

14

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

In this case, climb will be done up to the IFR Flight Level (as multiple of 100 feet) that ensures minimum mass
decrease, while being at most equal to maximum_flight_level.

climb_segment:
fastoad.models.performances.mission.segments.altitude_change.AltitudeChangeSegment =
None

The AltitudeChangeSegment that can be used if a preliminary climb is needed (its target will be ignored).

maximum_flight_level: float = 500.0
The maximum allowed flight level (i.e. multiple of 100 feet).

compute_from(starzs: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

class fastoad.models.performances.mission.segments.cruise.BreguetCruiseSegment (target: fas-
toad.model_base.flight_point.FI
propulsion:
fas-
toad.model_base.propulsion.IPr
polar: fas-
toad.models.performances.miss
refer-
ence_area:
float = 1.0,
time_step:
float = 60.0,
en-
gine_setting:
fas-
toad.constants.EngineSetting
= EngineSet-
ting. CLIMB,
alti-
tude_bounds:
tuple = (-
500.0,
40000.0),
mach_bounds:
tuple = (0.0,
5.0), name:
str=", inter-
rupt_if_getting_further_from_ta
bool = True,
use_max_lift_drag_ratio:
bool = False,
climb_and_descent_distance:
float = 0.0)

Bases: fastoad.models.performances.mission.segments.cruise.CruiseSegment

142 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

Class for computing cruise flight segment at constant altitude using Breguet-Leduc formula.

As formula relies on SFC, the propulsion model must be able to fill FlightPoint.sfc when FlightPoint.thrust is
provided.

use_max_lift_drag_ratio: bool = False
if True, max lift/drag ratio will be used instead of the one computed with polar using CL deduced from
mass and altitude. In this case, reference_area parameter will be unused

reference_area: float = 1.0
The reference area, in m**2. Used only if use_max_lift_drag_ratio is False.

climb_and_descent_distance: float = 0.0

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

fastoad.models.performances.mission.segments.hold module

Class for simulating hold segment.

class fastoad.models.performances.mission.segments.hold.HoldSegment (*args, **kwargs)
Bases: fastoad.models.performances.mission.segments.base.RegulatedThrustSegment,
fastoad.models.performances.mission.segments.base.FixedDurationSegment

Class for computing hold flight segment.

Mach is considered constant, equal to Mach at starting point. Altitude is constant. Target is a specified time. The
target definition indicates the time duration of the segment, independently of the initial time value.

target: fastoad.model_base.flight_point.FlightPoint
A FlightPoint instance that provides parameter values that should all be reached at the end of
compute_from(). Possible parameters depend on the current segment. A parameter can also be set
to CONSTANT_VALUE to tell that initial value should be kept during all segment.

propulsion: fastoad.model_base.propulsion.IPropulsion
A TPropulsion instance that will be called at each time step.

polar: fastoad.models.performances.mission.polar.Polar
The Polar instance that will provide drag data.

reference_area: float
The reference area, in m**2,

1.6. fastoad 143

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments.speed_change module

Classes for acceleration/deceleration segments.

class fastoad.models.performances.mission.segments.speed_change.SpeedChangeSegment (farget:

Bases: fastoad.models.performances.mission.segments.base.ManualThrustSegment
Computes a flight path segment where speed is modified with no change in altitude.
The target must define a speed value among true_airspeed, equivalent_airspeed and mach.

target: fastoad.model_base.flight_point.FlightPoint

fas-
toad.model_base.flight_po
propul-

sion:

fas-
toad.model_base.propulsic
polar:

fas-
toad.models.performances
refer-

ence_area:

float,

time_step:

float =

0.2, en-

gine_setting:

fas-
toad.constants.EngineSetti
= Engi-

neSet-

ting. CLIMB,

alti-

tude_bounds:

tuple =

(- 500.0,

40000.0),

mach_bounds:

tuple =

(0.0,

5.0),

name:

str=",

inter-
rupt_if_getting_further_frc
bool =

True,

thrust_rate:

float =

1.0)

A FlightPoint instance that provides parameter values that should all be reached at the end of
compute_from(). Possible parameters depend on the current segment. A parameter can also be set

to CONSTANT_VALUE to tell that initial value should be kept during all segment.

propulsion: fastoad.model_base.propulsion.IPropulsion

144

Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

A TPropulsion instance that will be called at each time step.

polar: fastoad.models.performances.mission.polar.Polar
The Polar instance that will provide drag data.

reference_area: float
The reference area, in m**2.

fastoad.models.performances.mission.segments.taxi module

Classes for Taxi sequences.

class fastoad.models.performances.mission.segments.taxi.TaxiSegment (target: fas-
toad.model_base.flight_point.FlightPoint,
propulsion: fas-
toad.model_base.propulsion.IPropulsion,
polar: Op-
tional[fastoad.models.performances.mission.p
= None, reference_area:
float = 1.0, time_step: float
= 60.0, engine_setting: fas-
toad.constants.EngineSetting
= EngineSetting. CLIMB,
altitude_bounds: tuple = (-
500.0, 40000.0),
mach_bounds: tuple = (0.0,
5.0), name: str =", inter-
rupt_if_getting_further_from_target:
bool = True, thrust_rate:
float = 1.0, true_airspeed:
float = 0.0)

Bases: fastoad.models.performances.mission.segments.base.ManualThrustSegment, fastoad.
models.performances.mission.segments.base.FixedDurationSegment

Class for computing Taxi phases.

Taxi phase has a target duration (target.time should be provided) and is at constant altitude, speed and thrust rate.

polar: fastoad.models.performances.mission.polar.Polar = None
The Polar instance that will provide drag data.

reference_area: float = 1.0
The reference area, in m**2.

time_step: float = 60.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

true_airspeed: float = 0.0

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for fime and/or
ground_distance.

1.6. fastoad 145

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

fastoad.models.performances.mission.segments.transition module

Class for very simple transition in some flight phases.

146 Chapter 1. Contents

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.transition.DummyTransitionSegment (target:

fas-
toad.model_base.flight_
propul-

sion:

Op-
tional[fastoad.model_b:

None,

po-

lar:

Op-
tional[fastoad.models.pi

None,
refer-
ence_area:
float

=1.0,
time_step:
float

0.2,

en-
gine_setting:
fas-
toad.constants.EngineSe
= En-

gine-

Set-
ting.CLIMB,
alti-
tude_bounds:
tuple

=(-

500.0,
40000.0),
mach_bounds:
tuple

(0.0,

5.0),

name:

str =

"
k)

inter-

rupt_if_getting_further_
bool

True,
mass_ratio:

float

1.0,
re-

1.6. fastoad

Bases: fastoad.models.performances.mission.segments.base.FlightSegment

fOAT

0.0)

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

Computes a transient flight part in a very quick and dummy way.
compute_from() will return only 2 or 3 flight points.

The second flight point is the end of transition and its mass is the start mass multiplied by mass_ratio. Other
parameters are equal to those provided in target.

If reserve_mass_ratio is non-zero, a third flight point, with parameters equal to flight_point(2), except for
mass where:

mass(2) - reserve_mass_ratio * mass(3) = mass(3).

In different words, mass(3) would be the Zero Fuel Weight (ZFW) and reserve can be expressed as a percentage
of ZFW.

mass_ratio: float = 1.0
The ratio (aircraft mass at END of segment)/(aircraft mass at START of segment)

reserve_mass_ratio: float = 0.0
The ratio (fuel mass)/(aircraft mass at END of segment) that will be consumed at end of segment.

propulsion: fastoad.model_base.propulsion.IPropulsion = None
Unused

reference_area: float = 1.0
Unused

polar: fastoad.models.performances.mission.polar.Polar = None
Unused

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Parameters start — the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for fime and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint ()

Module contents

Classes for simulating flight segments.

Submodules
fastoad.models.performances.mission.base module

Base classes for mission computation.

class fastoad.models.performances.mission.base.IFlightPart
Bases: abc.ABC

abstract compute_from(start: fastoad.model_base.flight_point.FlightPoint) —
pandas.core.frame.DataFrame
Computes a flight sequence from provided start point.

148 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/abc.html#abc.ABC
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint

class fastoad.models.performances.mission.base.FlightSequence
Bases: fastoad.models.performances.mission.base.IFlightPart

Defines and computes a flight sequence.

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes a flight sequence from provided start point.

Parameters start — the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint

property flight_sequence:
List[fastoad.models.performances.mission.base.IFlightPart]
List of IFlightPart instances that should be run sequentially.

fastoad.models.performances.mission.exceptions module

Exceptions for mission package.

exception fastoad.models.performances.mission.exceptions.FastFlightSegmentUnexpectedKeywordArgument (bad.
Bases: fastoad.exceptions.FastUnexpectedKeywordArgument

Raised when a segment is instantiated with an incorrect keyword argument.

exception fastoad.models.performances.mission.exceptions.FastFlightPointUnexpectedKeywordArgument (bad_ke
Bases: fastoad.exceptions.FastUnexpectedKeywordArgument

Raised when a FlightPoint is instantiated with an incorrect keyword argument.

exception
fastoad.models.performances.mission.exceptions.FastFlightSegmentIncompleteFlightPoint
Bases: fastoad.exceptions.FastError

Raised when a segment computation encounters a FlightPoint instance without needed parameters.

fastoad.models.performances.mission.polar module

Aerodynamic polar data.

class fastoad.models.performances.mission.polar.Polar(cl: numpy.ndarray, cd: numpy.ndarray)
Bases: object

Class for managing aerodynamic polar data.
Links drag coefficient (CD) to lift coefficient (CL). It is defined by two vectors with CL and CD values.
Once defined, for any CL value, CD can be obtained using cd ().
Parameters
* cl — a N-elements array with CL values

¢ cd - a N-elements array with CD values that match CL

1.6. fastoad 149

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#object

FAST-OAD, Release unknown

property definition_cl
The vector that has been used for defining lift coefficient.

property optimal_cl
The CL value that provides larger lift/drag ratio.

cd(cl=None)
Computes drag coefficient (CD) by interpolation in definition data.

Parameters cl - lift coefficient (CL) values. If not provided, the CL definition vector will be
used (i.e. CD definition vector will be returned)

Returns CD values for each provide CL values

fastoad.models.performances.mission.routes module

Classes for computation of routes (i.e. assemblies of climb, cruise and descent phases).

class fastoad.models.performances.mission.routes.SimpleRoute (climb_phases:
List[fastoad.models.performances.mission.base.FlightS
cruise_segment: fas-
toad.models.performances.mission.segments.cruise.Cru
descent_phases:
List[fastoad.models.performances.mission.base.FlightS
Bases: fastoad.models.performances.mission.base.FlightSequence

Computes a simple route.

The computed route will be be made of:
* any number of climb phases
* one cruise segment
 any number of descent phases.

climb_phases: List[fastoad.models.performances.mission.base.FlightSequence]
Any number of flight phases that will occur before cruise.

cruise_segment: fastoad.models.performances.mission.segments.cruise.CruiseSegment
The cruise phase.

descent_phases: List[fastoad.models.performances.mission.base.FlightSequence]
Any number of flight phases that will occur after cruise.

property cruise_distance
Ground distance to be covered during cruise, as set in target of cruise_segment.

property cruise_speed: Optional[Tuple[str, float]]
Type (among true_airspeed, equivalent_airspeed and mach) and value of cruise speed.

class fastoad.models.performances.mission.routes.RangedRoute (climb_phases:
List[tastoad.models.performances.mission.base.FlightS
cruise_segment: fas-
toad.models.performances.mission.segments.cruise.Cru
descent_phases:
List[tastoad.models.performances.mission.base.FlightS
flight_distance: float,
distance_accuracy: float = 500.0)

Bases: fastoad.models.performances.mission.routes.SimpleRoute

150 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

Computes a route so that it covers the specified ground distance.

flight_distance: float
Target ground distance for whole route

distance_accuracy: float = 500.0
Accuracy on actual total ground distance for the solver. In meters

compute_from(start: fastoad.model_base.flight_point.FlightPoint) — pandas.core.frame.DataFrame
Computes a flight sequence from provided start point.

Parameters start — the initial flight point, defined for alfitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for fime and/or
ground_distance.

Returns a pandas DataFrame where columns names match fields of F1ightPoint

fastoad.models.performances.mission.util module

Utilities for mission computation.

fastoad.models.performances.mission.util.get_closest_flight_level (altitude, base_level=0,
level_step=10,
up_direction=True)
Computes the altitude (in meters) of a flight level close to provided altitude.

Flight levels are multiples of 100 feet.

see examples below:

>>> # Getting the IFR flight level immediately above

>>> get_closest_flight_level(4400. * foot)

5000.0

>>> # Getting the IFR flight level immediately below

>>> get_closest_flight_level (4400. * foot, up_direction=False)
4000.0

>>> # Getting the next even IFR flight level

>>> get_closest_flight_level(4400. * foot, level_step = 20)
6000.0

>>> # Getting the next odd IFR flight level

>>> get_closest_flight_level(3100. * foot, base_level=10, level_step = 20)
5000.0

Parameters
* altitude - in meters
* base_level — base flight level for computed steps
* level_step — number of flight level per step
» up_direction - True if next flight level is upper. False if lower

Returns the altitude in meters of the asked flight level.

1.6. fastoad 151

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

Module contents

Performance module for mission simulation.

Module contents

Package for performance modules.

fastoad.models.propulsion package

Subpackages

fastoad.models.propulsion.fuel_propulsion package

Subpackages

fastoad.models.propulsion.fuel_propulsion.rubber_engine package
Subpackages

Submodules
fastoad.models.propulsion.fuel_propulsion.rubber_engine.constants module

Constants for rubber engine analytical models

fastoad.models.propulsion.fuel_propulsion.rubber_engine.exceptions module

Exceptions for rubber_engine package.

exception fastoad.models.propulsion.fuel_propulsion.rubber_engine.exceptions.
FastRubberEngineInconsistentInputParametersError
Bases: Exception

Raised when provided parameter combination is incorrect.

fastoad.models.propulsion.fuel_propulsion.rubber_engine.openmdao module

OpenMDAO wrapping of RubberEngine.

class
fastoad.models.propulsion. fuel_propulsion.rubber_engine.openmdao.0OMRubberEngineWrapper
Bases: fastoad.model_base.propulsion.IOMPropulsionirapper

Wrapper class of for rubber engine model.
It is made to allow a direct call to RubberEngine in an OpenMDAO component.

Example of usage of this class:

152 Chapter 1. Contents

https://docs.python.org/3.7/library/exceptions.html#Exception

FAST-OAD, Release unknown

import openmdao.api as om

class MyComponent (om.ExplicitComponent) :
def initialize(Q):
self._engine_wrapper = OMRubberEngineWrapper ()

def setup(Q):
Adds OpenMDAO variables that define the engine
self._engine_wrapper.setup(self)

Do the normal setup
self.add_input("my_input")
[finish the setup...]

def compute(self, inputs, outputs, discrete_inputs=None, discrete_outputs=None):
[do something]

Get the engine instance, with parameters defined from OpenMDAO inputs
engine = self._engine_wrapper.get_model (inputs)

Run the engine model. This is a pure Python call. You have to define
its inputs before, and to use its outputs according to your needs
sfc, thrust_rate, thrust = engine.compute_flight_points(

mach,

altitude,

engine_setting,

use_thrust_rate,

thrust_rate,

thrust

)

[do something else]

setup (component: openmdao.core.component.Component)
Defines the needed OpenMDAO inputs for propulsion instantiation as done in get_model ()

Use add_inputs and declare_partials methods of the provided component
Parameters component —

static get_model (inputs) — fastoad.model_base.propulsion.IPropulsion

Parameters inputs — input parameters that define the engine
Returns a RubberEngine instance

class fastoad.models.propulsion.fuel_propulsion.rubber_engine.openmdao.OMRubberEngineComponent (**kwargs)
Bases: fastoad.model_base.propulsion.BaseOMPropulsionComponent

Parametric engine model as OpenMDAO component
See RubberEngine for more information.

Store some bound methods so we can detect runtime overrides.

1.6. fastoad 153

FAST-OAD, Release unknown

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

static get_wrapper() — fas-
toad.models.propulsion.fuel_propulsion.rubber_engine.openmdao. OMRubberEngineWrapper
This method defines the used IOMPropulsionirapper instance.

Returns an instance of OpenMDAO wrapper for propulsion model

fastoad.models.propulsion.fuel_propulsion.rubber_engine.rubber_engine module

Parametric turbofan engine.

154 Chapter 1. Contents

FAST-OAD, Release unknown

class fastoad.models.propulsion.fuel_propulsion.rubber_engine.rubber_engine.RubberEngine (bypass_ratio:
float,
over-
all_pressure_ratio
float,
tur-
bine_inlet_temperc
float,
mto_thrust:
float,
max-
i-
mum_mach.:

float,
de-
sign_altitude:

float,
delta_t4_climb:
float

50,
delta_t4_cruise:
float

100,
k_sfc_sl:
float

1.0,
k_sfc_cr:
float

1.0)
Bases: fastoad.model_base.propulsion.AbstractFuelPropulsion

Parametric turbofan engine.

It computes engine characteristics using analytical model from following sources:

Parameters
e bypass_ratio -
e overall_pressure_ratio -
e turbine_inlet_temperature — (unit=K) also noted T4

e mto_thrust — (unit=N) Maximum TakeOff thrust, i.e. maximum thrust on ground at
speed 0, also noted FO

e maximum_mach —

1.6. fastoad 155

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

e design_altitude — (unit=m)

delta_t4_climb — (unit=K) difference between T4 during climb and design T4

delta_t4_cruise — (unit=K) difference between T4 during cruise and design T4

k_sfc_sl — SFC correction at sea level and below

¢ k_sfc_cr — SFC correction at 43000ft and above in cruise

compute_flight_points(flight_points: Union[fastoad.model_base.flight_point.FlightPoint,

pandas.core.frame.DataFrame])
Computes Specific Fuel Consumption according to provided conditions.

See FlightPoint for available fields that may be used for computation. If a DataFrame instance is pro-
vided, it is expected that its columns match field names of FlightPoint (actually, the DataFrame instance
should be generated from a list of FlightPoint instances).

Note: About thrust_is_regulated, thrust_rate and thrust

thrust_is_regulated tells if a flight point should be computed using thrust_rate (when False) or
thrust (when True) as input. This way, the method can be used in a vectorized mode, where each point
can be set to respect a thrust order or a thrust rate order.

 if thrust_is_regulated is not defined, the considered input will be the defined one between
thrust_rate and thrust (if both are provided, thrust_rate will be used)

e if thrust_is_regulatedis True or False (i.e., not a sequence), the considered input will be taken
accordingly, and should of course be defined.

« if there are several flight points, thrust_is_regulated is a sequence or array, thrust_rate
and thrust should be provided and have the same shape as thrust_is_regulated:code:.
The method will consider for each element which input will be used according to
thrust_is_regulated.

Parameters flight_points — FlightPoint or DataFram instance

Returns None (inputs are updated in-place)

compute_flight_points_from_dt4 (mach: Union[float, Sequence], altitude: Union[float, Sequence],

delta_t4: Union[float, Sequence], thrust_is_regulated:
Optional[Union[bool, Sequence]] = None, thrust_rate:
Optional[Union[float, Sequence]] = None, thrust:
Optional[Union[float, Sequence]] = None) — Tuple[Union[float,
Sequence], Union[float, Sequence], Union[float, Sequence]]
Same as compute_flight_points() except that delta_t4 is used directly instead of specifying flight
engine_setting.

Parameters
¢ mach — Mach number
¢ altitude — (unit=m) altitude w.r.t. to sea level

¢ delta_t4 - (unit=K) difference between operational and design values of turbine inlet
temperature in K

¢ thrust_is_regulated - tells if thrust_rate or thrust should be used (works element-
wise)

156

Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

¢ thrust_rate — thrust rate (unit=none)
¢ thrust — required thrust (unit=N)
Returns SFC (in kg/s/N), thrust rate, thrust (in N)

sfc_at_max_thrust (atmosphere: fastoad.model_base.atmosphere. Atmosphere, mach: Union[float,
Sequence(float]]) — numpy.ndarray
Computation of Specific Fuel Consumption at maximum thrust.

Uses model described in [Rou05], p.41.
Parameters
* atmosphere — Atmosphere instance at intended altitude
¢ mach — Mach number(s)
Returns SFC (in kg/s/N)

sfc_ratio(altitude: Union[float, Sequence[float]], thrust_rate: Union[float, Sequence[float]], mach:
Union[float, Sequence[float]] = 0.8) — numpy.ndarray

Computation of ratio %, given altitude and thrust_rate %
Uses a patched version of model described in [Rou(02], p.85.
Warning: this model is very limited
Parameters
e altitude —
* thrust_rate —
» mach — only used for logger checks as model is made for Mach~0.8

Returns SFC ratio

max_thrust (atmosphere: fastoad.model_base.atmosphere. Atmosphere, mach: Union[float, Sequence[float]],
delta_t4: Union[float, Sequence[float]]) — numpy.ndarray
Computation of maximum thrust.

Uses model described in [Rou05], p.57-58
Parameters
¢ atmosphere — Atmosphere instance at intended altitude (should be <=20km)
¢ mach — Mach number(s) (should be between 0.05 and 1.0)

¢ delta_t4 - (unit=K) difference between operational and design values of turbine inlet
temperature in K

Returns maximum thrust (in N)

installed_weight () — float
Computes weight of installed engine, depending on MTO thrust (F0).

Uses model described in [Rou05], p.74
Returns installed weight (in kg)

length() — float
Computes engine length from MTO thrust and maximum Mach.

Model from [Ray99], p.74

Returns engine length (in m)

1.6.

fastoad 157

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

nacelle_diameter() — float
Computes nacelle diameter from MTO thrust and bypass ratio.

Model of engine diameter from [Ray99], p.235. Nacelle diameter is considered 10% greater ([kroO1])

Returns nacelle diameter (in m)

Module contents

Provides a parametric model for turbofan:
* as a pure Python

¢ as OpenMDAO modules

Module contents
Module contents

Package for propulsion modules

fastoad.models.weight package

Subpackages

fastoad.models.weight.cg package

Subpackages

fastoad.models.weight.cg.cg_components package

Subpackages

fastoad.models.weight.cg.cg_components.load_cases package

Submodules
fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase1 module

Estimation of center of gravity for load case 1

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcasel.ComputeCGLoadCasel (**kwargs
Bases: fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base.
ComputeCGLoadCase

Center of gravity estimation for load case 1
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

158 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#float

FAST-OAD, Release unknown

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase2 module

Estimation of center of gravity for load case 2

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase2.ComputeCGLoadCase2 (**kwargs
Bases: fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base.
ComputeCGLoadCase

Center of gravity estimation for load case 3
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase3 module

Estimation of center of gravity for load case 3

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase3.ComputeCGLoadCase3 (**kwargs
Bases: fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base.
ComputeCGLoadCase

Center of gravity estimation for load case 3
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase4 module

Estimation of center of gravity for load case 4

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase4.ComputeCGLoadCase4 (**kwargs
Bases: fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base.
ComputeCGLoadCase

Center of gravity estimation for load case
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

1.6. fastoad 159

FAST-OAD, Release unknown

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base module

CG calculation for load cases.

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base.ComputeCGLoadCase (**kw:
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Base class for computing load cases for CG calculations.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

property output_name
Builds name of the unique output from option “case_number”.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
e inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcases module

Computes and aggregates CG ratios for load cases.

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcases.CGRatiosForLoadCases (**kwa
Bases: openmdao. core.group.Group

Aggregation of CG ratios from load case calculations.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

160 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

class fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcases.MaxCGRatiosForLoadCases(**
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Maximum center of gravity ratio from load cases.
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents
Submodules
fastoad.models.weight.cg.cg_components.compute_cg_control_surfaces module

Estimation of control surfaces center of gravity

1.6. fastoad 161

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

class fastoad.models.weight.cg.cg_components.compute_cg_control_surfaces.ComputeControlSurfacesCG(**kwa
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Control surfaces center of gravity estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

¢ discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.compute_cg_others module

Estimation centers of gravity of other components

class fastoad.models.weight.cg.cg_components.compute_cg_others.ComputeOthersCG(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Other components center of gravities estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

162 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

» discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.compute_cg_ratio_aft module

Estimation of center of gravity ratio with aft

class fastoad.models.weight.cg.cg_components.compute_cg_ratio_aft.ComputeCGRatioAft (**kwargs)
Bases: openmdao.core.group.Group

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

class fastoad.models.weight.cg.cg_components.compute_cg_ratio_aft.ComputeCG(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters

1.6. fastoad 163

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

class fastoad.models.weight.cg.cg_components.compute_cg_ratio_aft.CGRatio(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

¢ discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.compute_cg_tanks module

Estimation of tanks center of gravity

class fastoad.models.weight.cg.cg_components.compute_cg_tanks.ComputeTanksCG(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Tanks center of gravity estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.
initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

164 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.compute_cg_wing module

Estimation of wing center of gravity

class fastoad.models.weight.cg.cg_components.compute_cg_wing.ComputeWingCG(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing center of gravity estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

¢ discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 165

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.cg.cg_components.compute_global_cg module

Estimation of global center of gravity

class fastoad.models.weight.cg.cg_components.compute_global_cg.ComputeGlobalCG(**kwargs)
Bases: openmdao. core.group.Group

Global center of gravity estimation
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.models.weight.cg.cg_components.compute_ht_cg module

Estimation of horizontal tail center of gravity

class fastoad.models.weight.cg.cg_components.compute_ht_cg.ComputeHTcg(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Horizontal tail center of gravity estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
e inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

166 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

* discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.compute_max_cg_ratio module

Estimation of maximum center of gravity ratio

class fastoad.models.weight.cg.cg_components.compute_max_cg_ratio.ComputeMaxCGratio(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Maximum center of gravity ratio estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.compute_vt_cg module

Estimation of vertical tail center of gravity

class fastoad.models.weight.cg.cg_components.compute_vt_cg.ComputeVTcg(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Vertical tail center of gravity estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 167

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.cg_components.update_mlg module

Estimation of main landing gear center of gravity

class fastoad.models.weight.cg.cg_components.update_mlg.UpdateMLG(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Main landing gear center of gravity estimation
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

168 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Module contents

Estimation of centers of gravity

Submodules
fastoad.models.weight.cg.cg module

FAST - Copyright (c) 2016 ONERA ISAE

class fastoad.models.weight.cg.cg.CG(**kwargs)
Bases: openmdao.core.group.Group

Model that computes the global center of gravity
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

class fastoad.models.weight.cg.cg.ComputeAircraftCG(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Compute position of aircraft CG from CG ratio
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

1.6. fastoad 169

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.cg.constants module

Constants for CG submodels.

Module contents

fastoad.models.weight.mass_breakdown package

Subpackages

fastoad.models.weight.mass_breakdown.a_airframe package

Submodules
fastoad.models.weight.mass_breakdown.a_airframe.a1_wing_weight module

Estimation of wing weight

class fastoad.models.weight.mass_breakdown.a_airframe.al_wing weight.WingWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Wing weight estimation
This is done by summing following estimations:
* mass from sizing to flexion forces
¢ mass from sizing to shear forces
* mass of ribs
¢ mass of reinforcements
* mass of secondary parts
Based on [DCAC14], mass contribution Al
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

170 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.a_airframe.a2_fuselage weight module

Estimation of fuselage weight

class fastoad.models.weight.mass_breakdown.a_airframe.a2_fuselage_weight.FuselageWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Fuselage weight estimation
Based on a statistical analysis. See [DCAC14], mass contribution A2
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 171

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.a_airframe.a3_empennage_weight module

Estimation of empennage weight

class fastoad.models.weight.mass_breakdown.a_airframe.a3_empennage_weight.EmpennageWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for tail planes
Based on formulas in [DCAC14], mass contribution A3
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.a_airframe.a4_flight_control_weight module

Estimation of flight controls weight

class fastoad.models.weight.mass_breakdown.a_airframe.a4_flight_control_weight.FlightControlsWeight (**k
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Flight controls weight estimation
Based on formulas in [DCAC14], mass contribution A4
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

172 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.a_airframe.a5_landing_gear_weight module

Estimation of landing gear weight

class fastoad.models.weight.mass_breakdown.a_airframe.a5_landing_gear_weight.LandingGearWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for landing gears
Based on formulas in [DCAC14], mass contribution A5
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 173

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.a_airframe.a6_pylons_weight module

Estimation of pylons weight

class fastoad.models.weight.mass_breakdown.a_airframe.a6_pylons_weight.PylonsWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for pylons
Based on formula in [DCAC14], mass contribution A6
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

» discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.a_airframe.a7_paint_weight module

Estimation of paint weight

class fastoad.models.weight.mass_breakdown.a_airframe.a7_paint_weight.PaintWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for paint
Based on formula in [DCAC14], mass contribution A7
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

174 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.a_airframe.constants module

Constants for airframe mass submodels.

fastoad.models.weight.mass_breakdown.a_airframe.sum module

Computation of airframe mass.

class fastoad.models.weight.mass_breakdown.a_airframe.sum.AirframeWeight (**kwargs)
Bases: openmdao. core.group.Group

Computes mass of airframe.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

1.6. fastoad 175

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

Module contents

Estimation of airframe weight

fastoad.models.weight.mass_breakdown.b_propulsion package
Submodules
fastoad.models.weight.mass_breakdown.b_propulsion.b1_engine_weight module

Estimation of engine weight

class fastoad.models.weight.mass_breakdown.b_propulsion.bl_engine_weight.EngineWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Engine weight estimation
Uses model described in [Rou05], p.74
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None)—If not None, dict containing discrete output
values.

176 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.b_propulsion.b2_fuel_lines_weight module

Estimation of fuel lines weight

class fastoad.models.weight.mass_breakdown.b_propulsion.b2_fuel_lines_weight.FuelLinesWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for fuel lines
Based on formula in [DCAC14], mass contribution B2
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup(
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

» discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.b_propulsion.b3_unconsumables_weight module

Estimation of fuel lines weight

class fastoad.models.weight.mass_breakdown.b_propulsion.b3_unconsumables_weight.UnconsumablesWeight (**k
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for oil and unusable fuel
Based on formula in [DCAC14], mass contribution B3
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 177

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.b_propulsion.constants module

Constants for propulsion mass submodels.

fastoad.models.weight.mass_breakdown.b_propulsion.sum module

Computation of propulsion mass.

class fastoad.models.weight.mass_breakdown.b_propulsion.sum.PropulsionWeight (**kwargs)
Bases: openmdao . core.group.Group

Computes mass of propulsion.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

178 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

Module contents

Estimation of propulsion weight

fastoad.models.weight.mass_breakdown.c_systems package

Submodules

fastoad.models.weight.mass_breakdown.c_systems.c1_power_systems_weight module

Estimation of power systems weight

class fastoad.models.weight.mass_breakdown.c_systems.cl_power_systems_weight.PowerSystemsWeight (**kwargs

Bases: openmdao.core.explicitcomponent.ExplicitComponent
Weight estimation for power systems (generation and distribution)
This includes:
* Auxiliary Power Unit (APU)
* electric systems
* hydraulic systems
Based on formulas in [DCAC14], mass contribution C1
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6.

fastoad 179

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.c_systems.c2_life_support_systems_weight module

Estimation of life support systems weight

class fastoad.models.weight.mass_breakdown.c_systems.c2_life_support_systems_weight.LifeSupportSystemsW
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for life support systems
This includes:
* insulation
* air conditioning / pressurization
* de-icing
* internal lighting system
* seats and installation of crew
* fixed oxygen
e permanent security kits
Based on formulas in [DCAC14], mass contribution C2
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
e inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

180 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.c_systems.c3_navigation_systems_weight module

Estimation of navigation systems weight

class fastoad.models.weight.mass_breakdown.c_systems.c3_navigation_systems_weight.NavigationSystemsWeig!
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for navigation systems
Based on figures in [DCAC14], mass contribution C3
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup(
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

» discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.c_systems.c4_transmissions_systems_weight module

Estimation of transmissions systems weight

class fastoad.models.weight.mass_breakdown.c_systems.c4_transmissions_systems_weight.TransmissionSystem
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for transmission systems
Based on figures in [DCAC14], mass contribution C4
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

1.6. fastoad 181

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.c_systems.c5_fixed_operational_systems_weight mod-
ule

Estimation of fixed operational systems weight

class fastoad.models.weight.mass_breakdown.c_systems.c5_fixed_operational_systems_weight.FixedOperation
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for fixed operational systems (weather radar, flight recorder, ...)
Based on formulas in [DCAC14], mass contribution C5
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

182 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.c_systems.c6_flight_kit_weight module

Estimation of flight kit weight

class fastoad.models.weight.mass_breakdown.c_systems.c6_flight_kit_weight.FlightKitWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for flight kit (tools that are always on board)
Based on figures in [DCAC14], mass contribution C6
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.c_systems.constants module

Constants for systems mass submodels.

fastoad.models.weight.mass_breakdown.c_systems.sum module

Computation of mass of systems.

class fastoad.models.weight.mass_breakdown.c_systems.sum.SystemsWeight (**kwargs)
Bases: openmdao.core.group.Group

Computes mass of systems.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

1.6. fastoad 183

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents

Estimation of weight of all-mission systems

fastoad.models.weight.mass_breakdown.d_furniture package
Submodules
fastoad.models.weight.mass_breakdown.d_furniture.constants module

Constants for systems mass submodels.

fastoad.models.weight.mass_breakdown.d_furniture.d1_cargo_configuration_weight module

Estimation of cargo configuration weight

class fastoad.models.weight.mass_breakdown.d_furniture.dl_cargo_configuration_weight.CargoConfiguration
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for equipments for freight transport (applies only for freighters)
Based on [DCAC14], mass contribution D1
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters

* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

184 Chapter 1. Contents

FAST-OAD, Release unknown

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None)—If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.d_furniture.d2_passenger_seats weight module

Estimation of passenger seats weight

class fastoad.models.weight.mass_breakdown.d_furniture.d2_passenger_seats_weight.PassengerSeatsWeight (*
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for passenger seats
Based on [DCAC14], mass contribution D2
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.d_furniture.d3_food_water_weight module

Estimation of food water weight

class fastoad.models.weight.mass_breakdown.d_furniture.d3_food_water_weight.FoodWaterWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for food and water
Includes trolleys, trays, cutlery...

Based on [DCAC14], mass contribution D3

1.6. fastoad 185

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

* discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.d_furniture.d4_security_kit_weight module

Estimation of security kit weight

class fastoad.models.weight.mass_breakdown.d_furniture.d4_security_kit_weight.SecurityKitWeight (**kwargs
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for security kit
Based on [DCAC14], mass contribution D4
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters

* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

186 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None)—If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.d_furniture.d5_toilets_weight module

Estimation of toilets weight

class fastoad.models.weight.mass_breakdown.d_furniture.d5_toilets_weight.ToiletsWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for toilets
Based on [DCAC14], mass contribution D5
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.d_furniture.sum module

Computation of furniture mass.

class fastoad.models.weight.mass_breakdown.d_furniture.sum.FurnitureWeight (**kwargs)
Bases: openmdao.core.group.Group

Computes mass of furniture.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

1.6. fastoad 187

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents

Estimation of furniture weight

fastoad.models.weight.mass_breakdown.e_crew package
Submodules
fastoad.models.weight.mass_breakdown.e_crew.crew_weight module

Estimation of crew weight

class fastoad.models.weight.mass_breakdown.e_crew.crew_weight.CrewWeight (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Weight estimation for aircraft crew
Based on [DCAC14], mass contribution E
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]

* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

188 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

Estimation of crew weight

Submodules
fastoad.models.weight.mass_breakdown.constants module

Constants for mass submodels.

fastoad.models.weight.mass_breakdown.cs25 module

Computation of load cases

class fastoad.models.weight.mass_breakdown.cs25.Loads (**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes gust load cases

Load case 1: with wings with almost no fuel Load case 2: at maximum take-off weight
Based on formulas in [DCAC14], §6.3

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

1.6. fastoad 189

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.mass_breakdown module

Main components for mass breakdown.

class fastoad.models.weight.mass_breakdown.mass_breakdown.MassBreakdown (**kwargs)
Bases: openmdao . core.group.Group

Computes analytically the mass of each part of the aircraft, and the resulting sum, the Overall Weight Empty
(OWE).

Some models depend on MZFW (Max Zero Fuel Weight), MLW (Max Landing Weight) and MTOW (Max
TakeOff Weight), which depend on OWE.

This model cycles for having consistent OWE, MZFW and MLW.

Options: - payload_from_npax: If True (default), payload masses will be computed from NPAX, if False
design payload mass and maximum payload mass must be provided.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

class fastoad.models.weight.mass_breakdown.mass_breakdown.OperatingWeightEmpty (**kwargs)
Bases: openmdao.core.group.Group

Operating Empty Weight (OEW) estimation.
This group aggregates weight from all components of the aircraft.
Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

190 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

fastoad.models.weight.mass_breakdown.payload module

Payload mass computation

class fastoad.models.weight.mass_breakdown.payload.ComputePayload(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes payload from NPAX
Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
* inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

e discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

» discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

fastoad.models.weight.mass_breakdown.update_miw_and_mzfw module

Main component for mass breakdown

class fastoad.models.weight.mass_breakdown.update_mlw_and_mzfw.UpdateMLWandMZFW(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computes Maximum Landing Weight and Maximum Zero Fuel Weight from Overall Empty Weight and Maxi-
mum Payload.

Store some bound methods so we can detect runtime overrides.

Parameters **kwargs (dict of keyword arguments) — Keyword arguments that will be
mapped into the Component options.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

1.6. fastoad 191

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute (inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
¢ inputs (Vector) — unscaled, dimensional input variables read via inputs[key]
* outputs (Vector) — unscaled, dimensional output variables read via outputs[key]

» discrete_inputs (dict or None) — If not None, dict containing discrete input
values.

e discrete_outputs (dict or None) - If not None, dict containing discrete output
values.

Module contents

Estimation of Aircraft Weight

Submodules

fastoad.models.weight.constants module

Constants for weight submodels.

fastoad.models.weight.weight module

Weight computation (mass and CG)

class fastoad.models.weight.weight.Weight (**kwargs)

Bases: openmdao.core.group.Group

Computes masses and Centers of Gravity for each part of the empty operating aircraft, among these 5 categories:
airframe, propulsion, systems, furniture, crew

This model uses MTOW as an input, as it allows to size some elements, but resulting OWE do not aim at being
consistent with MTOW.

Consistency between OWE and MTOW can be achieved by cycling with a model that computes MTOW from
OWE, which should come from a mission computation that will assess needed block fuel.

Set the solvers to nonlinear and linear block Gauss—Seidel by default.

Parameters **kwargs (dict) — dict of arguments available here and in all descendants of this
Group.
initialize(Q)
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

192

Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

Module contents
Submodules
fastoad.models.constants module

Module for management of options and factorizing their definition.

Module contents

This package contains the OAD models of FAST-OAD.
It has to be declared as FAST-OAD plugin.

These models are based on following references:

fastoad.module_management package
Subpackages

Submodules
fastoad.module_management.constants module

The place for module-level constants.

class fastoad.module_management.constants.ModelDomain (value=<no_arg>, names=None,
module=None, type=None, start=1,
boundary=None)
Bases: aenum.Enum

Enumeration of model domains.

GEOMETRY = 'Geometry'

AERODYNAMICS = 'Aerodynamics'
HANDLING_QUALITIES = 'Handling Qualities'
WEIGHT = 'Weight'

PERFORMANCE = 'Performance'

PROPULSION = 'Propulsion'

OTHER = 'Other’

UNSPECIFIED = 'Unspecified'

1.6. fastoad 193

FAST-OAD, Release unknown

fastoad.module_management.exceptions module

Exceptions for module_management package.

exception fastoad.module_management.exceptions.FastBundleLoaderDuplicateFactoryError (fuctory_name:
Str)
Bases: fastoad.exceptions.FastError

Raised when trying to register a factory with an already used name.
Parameters factory_name —

exception fastoad.module_management.exceptions.FastBundleLoaderUnknownFactoryNameError (factory_name:
Str)
Bases: fastoad.exceptions.FastError

Raised when trying to instantiate a component from an unknown factory.
Parameters factory_name —

exception fastoad.module_management.exceptions.FastBadSystemOptionError (identifier,
option_names)
Bases: fastoad.exceptions.FastError

Raised when some option name is not conform to OpenMDAO system definition.
Parameters
e identifier - system identifier
* option_names — incorrect option names

exception fastoad.module_management.exceptions.FastIncompatibleServiceClassError (registered_class:
type, ser-
vice_id:
Str,
base_class:
type)
Bases: fastoad.exceptions.FastError

Raised when trying to register as service a class that does not implement the specified interface.
Parameters
* registered_class -
» service_id -
* base_class — the unmatched interface

exception fastoad.module_management.exceptions.FastNoSubmodelFoundError (service_id: sir)
Bases: fastoad.exceptions.FastError

Raised when a submodel is required, but none has been declared.
Parameters service_id -

exception fastoad.module_management.exceptions.FastTooManySubmodelsError (service_id: str,
candidates:
Sequence[str])
Bases: fastoad.exceptions.FastError

Raised when several candidates are declared for a required submodel, but none has been selected.

Parameters

194 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#type
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#type
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

e service_id -
e candidates —

exception fastoad.module_management.exceptions.FastUnknownSubmodelError (service_id: str,
submodel_id: str,
submodel_ids:
List[str])
Bases: fastoad.exceptions.FastError

Raised when a submodel identifier is unknown for given required service.
Parameters
» service_id -
* submodel_id -

e submodel_ids —

fastoad.module_management.service_registry module

Module for registering services.

class fastoad.module_management.service_registry.RegisterService(service_id: str, provider_id:
str, desc=None)
Bases: object

Decorator class that allows to register services and associated providers.
This class also provides class methods for getting service providers and information about them.

The basic registering of a class is done with:

@RegisterService('"my.service.id", "id.of.the.provider")
class MyService:

A child of this class may define a particular base class or interface that should be parent to all registered service
providers.

The definition of the base class is done when subclassing, e.g.:

class RegisterSomeService(RegisterService, base_class=ISomeService):
"Allows to register classes that implement interface ISomeService."

Parameters
» service_id - the identifier of the provided service
e provider_id - the identifier of the service provider to register
* desc - description of the service provider. If not provided, the docstring of decorated
class will be used.
get_properties(service_class: Type[fastoad.module_management.service_registry.T]) — dict
Override this method to modify the properties that will be associated to the registered service provider.

This basic version ensures the associated description property is the one provided when instantiating this
decorator class, if it is provided. Otherwise, it will be the docstring of the decorated class.

1.6. fastoad 195

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

Parameters service_class - the class that will be registered as service provider

Returns the dictionary of properties that will be associated to the registered service provider

classmethod explore_folder (folder_path: str)
Explores provided folder and looks for service providers to register.

Parameters folder_path —

classmethod get_provider_ids(service_id: str) — List[str]

Parameters service_id -
Returns the list of identifiers of providers of the service.

classmethod get_provider (service_provider_id: str, options: Optional[dict] = None) — Any
Instantiates the desired service provider.

Parameters
* service_provider_id - identifier of a registered service provider
e options — options that should be associated to the created instance
Returns the created instance

classmethod get_provider_description(instance_or_id: Union[str,
fastoad. module_management.service_registry. T]) — str

Parameters instance_or_id — an identifier or an instance of a registered service provider
Returns the description associated to given instance or identifier

classmethod get_provider_domain(instance_or_id: Union[str, openmdao.core.system.System]) —
fastoad.module_management.constants.ModelDomain

Parameters instance_or_id — an identifier or an instance of a registered service provider
Returns the model domain associated to given instance or identifier

class fastoad.module_management.service_registry.RegisterSpecializedService(provider_id: str,
desc=None,
domain: Op-
tional[fastoad.module_management
= None, options:
Optional[dict] =
None)

Bases: fastoad.module_management.service_registry.RegisterService

Base class for decorator classes that allow to register a particular service.

The service may be associated to a base class (or interface). The registered class must inherit from this base
class.

Unlike RegisterService, this class has to be subclassed, because the service identifier is defined when sub-
classing.

The definition of the base class is done by subclassing, e.g.:

196 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict

FAST-OAD, Release unknown

class RegisterSomeService(RegisterSpecializedService,
base_class=ISomeService,
service_id="my.particularservice"):
"Allows to register classes that implement interface ISomeService."

Then basic registering of a class is done with:

@RegisterSomeService('"my.particularservice.provider™)
class ParticularService(ISomeService):

Parameters
e provider_id - the identifier of the service provider to register
* desc — description of the service. If not provided, the docstring will be used.
» domain — a category for the registered service provider

* options - a dictionary of options that can be associated to the service provider

service_id: str

get_properties(service_class: Type[fastoad.module_management.service_registry.T]) — dict
Override this method to modify the properties that will be associated to the registered service provider.

This basic version ensures the associated description property is the one provided when instantiating this
decorator class, if it is provided. Otherwise, it will be the docstring of the decorated class.

Parameters service_class — the class that will be registered as service provider
Returns the dictionary of properties that will be associated to the registered service provider

classmethod get_provider_ids() — List[str]

Returns the list of identifiers of providers of the service.

class fastoad.module_management.service_registry.RegisterPropulsion(provider_id: str,
desc=None, domain: Op-
tional[fastoad.module_management.constants.
= None, options:
Optional[dict] = None)
Bases: fastoad.module_management.service_registry._RegisterSpecializedOpenMDAOService

Decorator class for registering an OpenMDAQO wrapper of a propulsion-dedicated model.
Parameters
» provider_id - the identifier of the service provider to register
* desc — description of the service. If not provided, the docstring will be used.
e domain — a category for the registered service provider
* options — a dictionary of options that can be associated to the service provider

service_id: str = 'fastoad.wrapper.propulsion'

1.6. fastoad 197

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

class fastoad.module_management.service_registry.RegisterOpenMDAOSystem(provider_id: str,
desc=None, domain:
Op-
tionalffastoad.module_management.cons
= None, options:
Optional[dict] =
None)

Bases: fastoad.module_management.service_registry._RegisterSpecializedOpenMDAOService

Decorator class for registering an OpenMDAO system for use in FAST-OAD configuration.

If a variable_descriptions.txt file is in the same folder as the class module, its content is loaded (once, even if
several classes are registered at the same level).

Parameters
e provider_id - the identifier of the service provider to register
* desc — description of the service. If not provided, the docstring will be used.
¢ domain - a category for the registered service provider
» options — a dictionary of options that can be associated to the service provider
service_id: str = 'fast.openmdao.system'

class fastoad.module_management.service_registry.RegisterSubmodel (service_id: str, provider_id:
str, desc=None, options:
Optional[dict] = None)
Bases: fastoad.module_management.service_registry._RegisterOpenMDAOService

Decorator class that allows to submodels.
Submodels are OpenMDAO systems that fulfill a requirement (service id) in a FAST-OAD module.

active_models defines the submodel to be used for any service identifier it has as key. See get_submodel ()
for more details.

The registering of a class is done with:

@RegisterSubmodel ("my.service", "id.of.the.provider™)
class MyService:

Then the submodel can be instantiated and used with:

submodel_instance = RegisterSubmodel.get_submodel ("my.service")
some_model .add_subsystem("my_submodel"”, submodel_instance, promotes=["*"])

Parameters
» service_id - the identifier of the provided service
» provider_id - the identifier of the service provider to register
* desc - description of the service. If not provided, the docstring will be used.
* options — a dictionary of options that will be defaults when instantiating the system

active_models: Dict[str, Optional[str]] = {}
Dictionary (key = service id, value=provider id) that defines submodels to be used for associated services.

198 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

classmethod get_submodel (service_id: str, options: Optional[dict] = None)
Provides a submodel for the given service identifier.

If active_models has service_id as key:

« if the associated value is a non-empty string, a submodel will be instantiated with this string as
submodel identifier. If the submodel identifier matches nothing, an error will be raised.

* if the associated value is None, an empty submodel (om.Group()) will be instantiated. You may
see it as a way to deactivate a particular submodel.

If active_models has service_id has NOT as key:
¢ if no submodel is declared for this service_id, an error will be raised.
* if one and only one submodel is declared for this service_id, it will be instantiated.
* if several submodels are declared for this service_id, an error will be raised.
If an actual (not empty) submodel is defined, provided options will be used.
Parameters
* service_id-
e options —

Returns the instantiated submodel

Module contents

Management of modules using Pelix/iPOPO

fastoad.openmdao package

Subpackages

Submodules

fastoad.openmdao.problem module

class fastoad.openmdao.problem.FASTOADProblem(*args, **kwargs)

Bases: openmdao.core.problem.Problem
Vanilla OpenMDAO Problem except that it can write its outputs to a file.

It also runs ValidityDomainChecker after each run_model () or run_driver() (but it does nothing if no
check has been registered).

Initialize attributes.
Parameters

» model (<System> or None) — The top-level <System>. If not specified, an empty
<Group> will be created.

» driver (<Driver> or None) — The driver for the problem. If not specified, a simple
“Run Once” driver will be used.

e comm (MPI.Comm or <FakeComm> or None)— The global communicator.

1.6.

fastoad 199

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None

FAST-OAD, Release unknown

* name (str) — Problem name. Can be used to specify a Problem instance when multiple
Problems exist.

» **options (named args)— All remaining named args are converted to options.

output_file_path
File path where write_outputs() will write outputs

additional_variables
Variables that are not part of the problem but that should be written in output file.

run_model (case_prefix=None, reset_iter_counts=True)
Run the model by calling the root system’s solve_nonlinear.

Parameters
e case_prefix (str or None)— Prefix to prepend to coordinates when recording.

* reset_iter_counts (bool) — If True and model has been run previously, reset all
iteration counters.

run_driver (case_prefix=None, reset_iter_counts=True)
Run the driver on the model.

Parameters
* case_prefix (str or None)— Prefix to prepend to coordinates when recording.

e reset_iter_counts (bool) — If True and model has been run previously, reset all
iteration counters.

Returns Failure flag; True if failed to converge, False is successful.
Return type boolean

write_outputs(Q
Writes all outputs in the configured output file.

fastoad.openmdao.validity_checker module

For checking validity domain of OpenMDAO variables.

class fastoad.openmdao.validity_checker.CheckRecord(variable_name, status, limit_value, limit_units,
value, value_units, source_file, logger_name)
Bases: tuple

A namedtuple that contains result of one variable check

property limit_units
Alias for field number 3

property limit_value
Alias for field number 2

property logger_name
Alias for field number 7

property source_file
Alias for field number 6

property status
Alias for field number 1

200 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#tuple

FAST-OAD, Release unknown

property value
Alias for field number 4

property value_units
Alias for field number 5

property variable_name
Alias for field number O

class fastoad.openmdao.validity_checker.ValidityStatus (value)
Bases: enum. IntEnum

Simple enumeration for validity status.

OK =0
TOO_LOW = -1
TOO_HIGH = 1

class fastoad.openmdao.validity_checker.ValidityDomainChecker (limits: Optional[Dict/str, tuple]] =
None, logger_name: Optional[str]
= None)
Bases: object

Decorator class that checks variable values against limit bounds
This class aims at producing a status of out of limits variables at the end of an OpenMDAO computation.

The point is to allow to define limit bounds when defining an OpenMDAO system, but to make the check on the
OpenMDAO problem after the run.

When defining an OpenMDAO system, use this class as Python decorator to define validity domains:

@ValidityDomainChecker
class MyComponent (om.explicitComponent) :

The above code will check values against lower and upper bounds that have been defined when adding OpenM-
DAO outputs.

Next code shows how to define lower and upper bounds, for inputs and/or outputs.

@ValidityDomainChecker(

{
"a:variable:with:two:bounds": (-10.0, 1.0),
"a:variable:with:lower:bound:only": (0.0, None),
"a:variable:with:upper:bound:only": (None, 4.2),
1,

)

class MyComponent(om.explicitComponent) :

The defined domain limits supersedes lower and upper bounds from OpenMDAO output definitions, but only in
the frame of ValidityDomainChecker. In any case, OpenMDAO process is not affected by usage of ValidityDo-
mainChecker.

Validity status can be obtained through log messages from Python logging module after problem has been run
with:

1.6. fastoad 201

https://docs.python.org/3.7/library/enum.html#enum.IntEnum
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object

FAST-OAD, Release unknown

problem.run_model ()
ValidityDomainChecker.check_problem_variables(problem)

Warnings: - Units of limit values defined in ValidityDomainChecker are assumed to be the

same as in add_input() and add_output() statements of decorated class
 Validity check currently only applies to scalar values

Parameters

e limits — a dictionary where keys are variable names and values are two-values tuples
that give lower and upper bound. One bound can be set to None.

* logger_name — The named of the logger that will be used. If not provided, name of

current module (i.e. “__name__ ") will be used.

classmethod check_problem_variables(problem: openmdao.core.problem.Problem) —
List[fastoad.openmdao.validity_checker.CheckRecord]
Checks variable values in provided problem.

Logs warnings for each variable that is out of registered limits.
problem.setup() must have been run.

Parameters problem —

Returns the list of checks

classmethod check_variables(variables: fastoad.openmdao.variables.VariableList) —
List[fastoad.openmdao.validity_checker.CheckRecord]
Check values of provided variables against registered limits.

Parameters variables —
Returns the list of checks

static log_records(records: List[fastoad.openmdao.validity_checker.CheckRecord])
Logs warnings through Python logging module for each CheckRecord in provided list if it is not OK.

Parameters records —

Returns

fastoad.openmdao.variables module

Module for managing OpenMDAO variables

class fastoad.openmdao.variables.Variable (name, **kwargs)
Bases: Hashable

A class for storing data of OpenMDAO variables.
Instantiation is expected to be done through keyword arguments only.

Beside the mandatory parameter ‘name, kwargs is expected to have keys ‘value’, ‘units’ and ‘desc’, that are
accessible respectively through properties name (), value (), units() and description().

Other keys are possible. They match the definition of OpenMDAQO’s method Component.add_output() de-
scribed here.

202 Chapter 1. Contents

https://docs.python.org/3.7/library/typing.html#typing.Hashable
http://openmdao.org/twodocs/versions/latest/_srcdocs/packages/core/component.html#openmdao.core.component.Component.add_output

FAST-OAD, Release unknown

These keys can be listed with class method get_openmdao_keys (). Any other key in kwargs will be silently
ignored.

Special behaviour: description() will return the content of kwargs[‘desc’] unless these 2 conditions are met:
» kwargs[‘desc’] is None or ‘desc’ key is missing
* adescription exists in FAST-OAD internal data for the variable name
Then, the internal description will be returned by description()
Parameters kwargs — the attributes of the variable, as keyword arguments

name
Name of the variable

metadata: Dict
Dictionary for metadata of the variable

classmethod read_variable_descriptions(file_parent: str, update_existing: bool = True)
Reads variable descriptions in indicated folder or package, if it contains some.

The file variable_descriptions.txt is looked for. Nothing is done if it is not found (no error raised also).

Each line of the file should be formatted like:

my:variable| |The description of my:variable, as long as needed, but on one.
—line.

Parameters
» file_parent — the folder path or the package name that should contain the file
e update_existing —if True, previous descriptions will be updated. if False, previous

descriptions will be erased.

classmethod update_variable_descriptions (variable_descriptions: Union[Mapping[str, str],
Iterable[Tuple[str, str]]])
Updates description of variables.

Parameters variable_descriptions — dict-like object with variable names as keys and
descriptions as values

classmethod get_openmdao_keys()

Returns the keys that are used in OpenMDAO variables

property value
value of the variable

property val
value of the variable (alias of property “value”)

property units
units associated to value (or None if not found)

property description
description of the variable (or None if not found)

property desc
description of the variable (or None if not found) (alias of property “description”)

1.6. fastoad 203

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

property is_input
1/0O status of the variable.

e True if variable is a problem input
* False if it is an output
* None if information not found

class fastoad.openmdao.variables.VariableList (iterable=(),/)
Bases: 1list

Class for storing OpenMDAO variables
A list of Variable instances, but items can also be accessed through variable names.

There are 2 ways for adding a variable:

Assuming these Python variables are ready
var_1 = Variable('var/1', value=0.)

metadata_2 = {'value': 1., 'units': 'm'}

... a VariableList instance can be populated like this

vars = VariableList()

vars.append(var_1) # Adds directly a Variable instance
vars['var/2'] = metadata_2 # Adds the variable with given name and given.,
—.metadata

After that, following equalities are True:

print(var_1 in vars)
print('var/1' in vars.names())
print('var/2' in vars.names())

Note: Adding a Variable instance that has a name that is already in the VariableList instance will replace the
previous Variable instance instead of adding a new one.

names () — List[str]

Returns names of variables

metadata_keys () — List[str]

Returns the metadata keys that are common to all variables in the list

append (var: fastoad.openmdao.variables.Variable) — None
Append var to the end of the list, unless its name is already used. In that case, var will replace the previous
Variable instance with the same name.

update (other_var_list: fastoad.openmdao.variables.VariableList, add_variables: bool = True)
Uses variables in other_var_list to update the current VariableList instance.

For each Variable instance in other_var_list:

« if a Variable instance with same name exists, it is replaced by the one in other_var_list (special
case: if one in other_var_list has an empty description, the original description is kept)

* if not, Variable instance from other_var_list will be added only if add_variables==True

204 Chapter 1. Contents

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool

FAST-OAD, Release unknown

Parameters
¢ other_var_list — source for new Variable data

¢ add_variables — if True, unknown variables are also added

to_ivc() — openmdao.core.indepvarcomp.IndepVarComp

Returns an OpenMDAO IndepVarComp instance with all variables from current list

to_dataframe () — pandas.core.frame.DataFrame
Creates a DataFrame instance from a VariableList instance.

Column names are “name” + the keys returned by Variable.get_openmdao_keys (). Values in Series
“value” are floats or lists (numpy arrays are converted).

Returns a pandas DataFrame instance with all variables from current list

classmethod from_dict(var_dict: Union[Mapping[str, dict], Iterable[Tuple[str, dict]]]) —
fastoad.openmdao.variables.VariableList
Creates a VariableList instance from a dict-like object.

Parameters var_dict —
Returns a VariableList instance

classmethod from_ivc(ivc: openmdao.core.indepvarcomp.IndepVarComp) —
fastoad.openmdao.variables.VariableList
Creates a VariableList instance from an OpenMDAO IndepVarComp instance

Parameters ivc — an IndepVarComp instance
Returns a VariableList instance

classmethod from_dataframe(df: pandas.core.frame.DataFrame) —
fastoad.openmdao.variables.VariableList
Creates a VariableList instance from a pandas DataFrame instance.

The DataFrame instance is expected to have column names “name” + some keys among the ones given by
Variable.get_openmdao_keys().

Parameters df — a DataFrame instance
Returns a VariableList instance

classmethod from_problem(problem: openmdao.core.problem.Problem, use_initial_values: bool = False,
get_promoted_names: bool = True, promoted_only: bool = True) —
fastoad.openmdao.variables.VariableList
Creates a VariableList instance containing inputs and outputs of an OpenMDAO Problem.

Warning: problem.setup() must have been run.

The inputs (is_input=True) correspond to the variables of IndepVarComp components and all the uncon-
nected variables.

Note: Variables from _auto_ivc are ignored.

Parameters

1.6.

fastoad 205

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

FAST-OAD, Release unknown

¢ problem — OpenMDAO Problem instance to inspect

e use_initial_values - if True, returned instance will contain values before compu-
tation

* get_promoted_names — if True, promoted names will be returned instead of absolute
ones (if no promotion, absolute name will be returned)

¢ promoted_only — if True, only promoted variable names will be returned
Returns VariableList instance
classmethod from_unconnected_inputs(problem: openmdao.core.problem.Problem,
with_optional_inputs: bool = False) —

fastoad.openmdao.variables.VariableList
Creates a VariableList instance containing unconnected inputs of an OpenMDAO Problem.

Warning: problem.setup() must have been run.

If optional_inputs is False, only inputs that have numpy.nan as default value (hence considered as manda-
tory) will be in returned instance. Otherwise, all unconnected inputs will be in returned instance.

Parameters
e problem — OpenMDAO Problem instance to inspect

e with_optional_inputs — If True, returned instance will contain all unconnected
inputs. Otherwise, it will contain only mandatory ones.

Returns VariableList instance

fastoad.openmdao.whatsopt module

WhatsOpt-related operations.

fastoad.openmdao.whatsopt.write_xdsm(problem: openmdao.core.problem.Problem, xdsm_file_path:
Optional[str] = None, depth: int = 2, wop_server_url: Optional[str]
= None, dry_run: bool = False)
Makes WhatsOpt generate a XDSM in HTML file.

Parameters
* problem — a Problem instance. final_setup() must have been run.
e xdsm_file_path — the path for HTML file to be written (will overwrite if needed)
* depth — the depth analysis for WhatsOpt

» wop_server_url — URL of WhatsOpt server (if None, ether.onera.fr/whatsopt will be
used)

e dry_run — if True, will run wop without sending any request to the server. Generated
XDSM will be empty. (for test purpose only)

206 Chapter 1. Contents

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool

FAST-OAD, Release unknown

Module contents

Submodules

fastoad.api module

This module gathers key FAST-OAD classes and functions for convenient import.

fastoad.constants module

Definition of globally used constants.

class fastoad.constants.FlightPhase (value=<no_arg>, names=None, module=None, type=None, start=1,
boundary=None)
Bases: aenum.Enum

Enumeration of flight phases.
TAXI_OUT = 'taxi_out'

TAKEOFF = 'takeoff'
INITIAL_CLIMB = 'initial_climb'
CLIMB = 'climb'

CRUISE = 'cruise'

DESCENT = 'descent'
LANDING = 'landing'
TAXI_IN = '"taxi_in'

class fastoad.constants.EngineSetting(value=<no_arg>, names=None, module=None, type=None,
start=1, boundary=None)
Bases: aenum. IntEnum

Enumeration of engine settings.

classmethod convert(name: str) — fastoad.constants.EngineSetting

Parameters name —
Returns the EngineSetting instance that matches the provided name (case-insensitive)
TAKEOFF = 1
CLIMB = 2
CRUISE = 3
IDLE = 4

class fastoad.constants.RangeCategory (value=<no_arg=>, names=None, module=None, type=None,
start=1, boundary=None)
Bases: aenum. Enum

Definition of lower and upper limits of aircraft range categories, in Nautical Miles.

can be used like::

1.6. fastoad 207

https://docs.python.org/3.7/library/stdtypes.html#str

FAST-OAD, Release unknown

>>> range_value = 800.
>>> range_value in RangeCategory.SHORT
True

which is equivalent to:

>>> RangeCategory.SHORT.min() <= range_value <= RangeCategory.SHORT.max()

SHORT = (0.0, 1500.0)
SHORT_MEDIUM = (1500.0, 3000.0)
MEDIUM = (3000.0, 4500.0)

LONG = (4500.0, 6000.0)
VERY_LONG = (6000.0, 1000000.0)

min()

Returns minimum range in category

max ()

Returns maximum range in category

fastoad.exceptions module

Module for custom Exception classes

exception fastoad.exceptions.FastError
Bases: Exception

Base Class for exceptions related to the FAST framework.

exception fastoad.exceptions.NoSetupError
Bases: fastoad.exceptions.FastError

No Setup Error.
This exception indicates that a setup of the OpenMDAO instance has not been done, but was expected to be.

exception fastoad.exceptions.XMLReadError
Bases: fastoad.exceptions.FastError

XML file read Error.
This exception indicates that an error occurred when reading an xml file.

exception fastoad.exceptions.FastUnknownEngineSettingError
Bases: fastoad.exceptions.FastError

Raised when an unknown engine setting code has been encountered

exception fastoad.exceptions.FastUnexpectedKeywordArgument (bad_keyword)
Bases: fastoad.exceptions.FastError

Raised when an instantiation is done with an incorrect keyword argument.

208 Chapter 1. Contents

https://docs.python.org/3.7/library/exceptions.html#Exception

FAST-OAD, Release unknown

Module contents

1.6. fastoad 209

FAST-OAD, Release unknown

210 Chapter 1. Contents

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

211

FAST-OAD, Release unknown

212 Chapter 2. Indices and tables

[kro01]

[Ray99]

[Rou02]

[Rou05]

[kro01]

[DCAC14]

[Ray99]

[Rou02]

[Rou05]

BIBLIOGRAPHY

2001. URL: https://web.archive.org/web/20010307121417/http://adg.stanford.edu/aa241/propulsion/
nacelledesign.html.

Daniel P. Raymer. Aircraft Design: A Conceptual Approach, Third edition. AIAA (American Institute of
Aeronautics & Astronautics, 1999. ISBN 1563473437.

Elodie Roux. Modéles Moteurs... Réacteurs double flux civils et réacteurs militaires a faible taux de di-
lution avec Post-Combustion. INSA-SupAéro-ONERA, 2002. URL: http:/elodieroux.com/ReportFiles/
ModelesMoteurVersionPublique.pdf.

Elodie Roux. Pour une approche analytique de la Dynamique du Vol. PhD thesis, SupAéro, 2005. URL:
http://depozit.isae.fr/theses/2005/2005_Roux_Elodie.pdf.

2001. URL: https://web.archive.org/web/20010307121417/http://adg.stanford.edu/aa241/propulsion/
nacelledesign.html.

Willy Pierre Dupont, Christian Colongo, Olivier Atinault, and Christophe Cros. Preliminary Design of a
Commercial Transport Aircraft. ISAE-SUPAERO, 2014.

Daniel P. Raymer. Aircraft Design: A Conceptual Approach, Third edition. AIAA (American Institute of
Aeronautics & Astronautics, 1999. ISBN 1563473437.

Elodie Roux. Modéles Moteurs... Réacteurs double flux civils et réacteurs militaires a faible taux de di-
lution avec Post-Combustion. INSA-SupAéro-ONERA, 2002. URL: http://elodieroux.com/ReportFiles/
ModelesMoteurVersionPublique.pdf.

Elodie Roux. Pour une approche analytique de la Dynamique du Vol. PhD thesis, SupAéro, 2005. URL:
http://depozit.isae.fr/theses/2005/2005_Roux_Elodie.pdf.

213

https://web.archive.org/web/20010307121417/http://adg.stanford.edu/aa241/propulsion/nacelledesign.html
https://web.archive.org/web/20010307121417/http://adg.stanford.edu/aa241/propulsion/nacelledesign.html
http://elodieroux.com/ReportFiles/ModelesMoteurVersionPublique.pdf
http://elodieroux.com/ReportFiles/ModelesMoteurVersionPublique.pdf
http://depozit.isae.fr/theses/2005/2005_Roux_Elodie.pdf
https://web.archive.org/web/20010307121417/http://adg.stanford.edu/aa241/propulsion/nacelledesign.html
https://web.archive.org/web/20010307121417/http://adg.stanford.edu/aa241/propulsion/nacelledesign.html
http://elodieroux.com/ReportFiles/ModelesMoteurVersionPublique.pdf
http://elodieroux.com/ReportFiles/ModelesMoteurVersionPublique.pdf
http://depozit.isae.fr/theses/2005/2005_Roux_Elodie.pdf

FAST-OAD, Release unknown

214 Bibliography

f

fastoad,
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.
fastoad.

fastoad.
fastoad.

fastoad.

.gui

209
api, 207

cmd, 57

cmd. api, 54

cmd. exceptions, 57

cmd. fast, 57

constants, 207
exceptions, 208

gui, 62
gui.analysis_and_plots, 57
gui.exceptions, 59
gui.mission_viewer, 59
.optimization_viewer, 60
gui.variable_viewer, 61

io, 72

io.configuration, 65

io.
io.
io.

configuration.exceptions, 64
formatter, 70
io.variable_io, 70

io.xml, 70

io.xml.constants, 66
io.xml.exceptions, 66
io.xml.translator, 67
io.xml.variable_io_base, 68
io.xml.variable_io_legacy, 68
io.xml.variable_io_standard, 69
model_base, 80
model_base.atmosphere, 72
model_base.flight_point, 74
model_base.propulsion, 77
models, 193
models.aerodynamics, 98

configuration.configuration, 62

fastoad.
fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

models.aerodynamics.aerodynamics_high_speed,

95

fastoad.

models.aerodynamics.aerodynamics_landing,

95

97

fastoad.

models.aerodynamics.aerodynamics_low_sgeed,

astoad.

models. aerodynamics .aerodynamics_takeoi@Stoad.

98

fastoad.

PYTHON MODULE INDEX

models.
models.
82
models.
83
models.
83
models.
84
models.
85
models.
86
models.
86
models.
87
models.
88
models.
88
models.
89
models.
90
models.
91
models.
91
models.
92
models.
93
models.
82
models.
80
models.
82
models.
models.
models.

aerodynamics.
aerodynamics.

aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.
aerodynamics.

aerodynamics.
aerodynamics.

components,
components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

94
cdo,

cdO_fuselage,
cd®_ht,
cdO®_nacelles_pylons
cd®_total,

cdo_vt,

cd®_wing,
cd_compressibility,
cd_trim,
compute_low_speed_:
compute_max_cl_lanc
compute_polar,
compute_reynolds
high_lift_aero,
initialize_cl,
oswald,

utils,
utils.cdO®_lifting s

utils.friction_drac

constants, 98

external, 95

external.xfoil,

215

FAST-OAD, Release unknown

components,

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

(of¢

CC

CC

CC

CC

C(

CC

CC

(of¢

CC

CC

compute_wing,

95 117
fastoad.models.aerodynamics.external.xfoil.xfofid$88ad.models.geometry.geom_components.wing.

94 117
fastoad.models.aerodynamics.external.xfoil.xfofildspoddmodels.geometry.geom_components.wing.

94 109
fastoad.models.constants, 193 fastoad.models.geometry.geom_components.wing.
fastoad.models.geometry, 121 110
fastoad.models.geometry.compute_aero_center, fastoad.models.geometry.geom_components.wing.

120 111
fastoad.models.geometry.constants, 120 fastoad.models.geometry.geom_components.wing.
fastoad.models.geometry.geom_components, 118 111
fastoad.models.geometry.geom_components.computfasiedaddnadebs . geometry.geom_components.wing.

117 112
fastoad.models.geometry.geom_components. fuselaf@stoad.models.geometry.geom_components.wing.

101 113
fastoad.models.geometry.geom_components. fusel afps tompmedehd egeonfersey ageom_components.wing.

99 113
fastoad.models.geometry.geom_components. fuselafms toapimeddlsedegre try . geom_components.wing.

99 114
fastoad.models.geometry.geom_components.ht, fastoad.models.geometry.geom_components.wing.

104 115
fastoad.models.geometry.geom_components.ht.combmsiendd, models.geometry.geom_components.wing.

104 115
fastoad.models.geometry.geom_components.ht . combmsiendd. modgpl egddmetoyrdgeom_components.wing.

101 116
fastoad.models.geometry.geom_components.ht . compasientd..modpls ogddmetirylgpdham components.wing.

102 117
fastoad.models.geometry.geom_components.ht . combomsiendd. ol g ddmeanacy . geometry, 121

102 fastoad.models.geometry.profiles, 120
fastoad.models.geometry.geom_components.ht . compasientd.modpld ogddmeteeprofiles.profile, 118

103 fastoad.models.geometry.profiles.profile_getter,
fastoad.models.geometry.geom_components.ht.compute_hordifontal_tail

104 fastoad.models.handling_qualities, 124
fastoad.models.geometry.geom_components.nacellfapydadhsyodels.handling_qualities.compute_static_margin,

105 123
fastoad.models.geometry.geom_components.nacellfapydahsnadabsteamdliedd eqpyllbnkes . tail_sizing,

104 123
fastoad.models.geometry.geom_components.vt, fastoad.models.handling_qualities

109 121
fastoad.models.geometry.geom_components.vt.compmsiendd, models.handling_qualities

109 122
fastoad.models.geometry.geom_components. vt .combmsiendd.modpld chartd Hhogdgyalities

105 123
fastoad.models.geometry.geom_components. vt .combmsendd. modpld el adp s 1 E1pha,

106 fastoad.models.loops.compute_wing_area, 124
fastoad.models.geometry.geom_components. vt .combmsiendd.. modpld] atp slicdmmeee_wing_position,

107 125
fastoad.models.geometry.geom_components. vt . combmsiendd. modgplt sperntfmamnces, 152

107 fastoad.models.performances.mission, 152
fastoad.models.geometry.geom_components. vt .combmsendd. modply cpertfcrespces . mission. base, 148

108 fastoad.models.performances.mission.exceptions
fastoad.models.geometry.geom_components.vt.compute_vertfcal tail,

109 fastoad.models.performances.mission.mission_definition,
fastoad.models.geometry.geom_components.wing, 128
216 Python Module Index

.tail_sizing.compute_ht_:
.tail_sizing.compute_tail

.tail_sizing.compute_vt_:

FAST-OAD, Release unknown

models
126
models
126
models
128
models
131
models
128
models
129
models
130
models
149
models
150
models
148
models
131
models
134
models
138
models
143
models
144
models
145
models
146
models
models
models
158
models
158
models
152
models
152
models
152
models
154
models
models
models
models
models
161

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.

fastoad.
fastoad.

Python Module Index

217

.performances.mission.mission_deffdstiddidmedekphiohght .cg.cg_components.compute_cg_others
162
.performances.mission.mission_deffastidddmadeks omebglifldeg, cg_components.compute_cg_ratio_a:
163
.performances.mission.mission_deffastidddmedhbmayeight.cg.cg_components.compute_cg_tanks
164
.performances.mission.openmdao, fastoad.models.weight.cg.cg_components.compute_cg_wing,
165
.performances.mission.openmdao. lfimktaetdrmodels.weight.cg.cg_components.compute_global_cg
166
.performances.mission.openmdao . mizstiond .models.weight.cg.cg_components.compute_ht_cg,
166
.performances.mission.openmdao . mizstiond mmadpks, weight . cg.cg_components.compute_max_cg_rati
167
.performances.mission.polar, fastoad.models.weight.cg.cg_components.compute_vt_cg,
167
.performances.mission.routes, fastoad.models.weight.cg.cg_components.load_cases,
161
.performances.mission.segments, fastoad.models.weight.cg.cg_components.load_cases.compute_
158
.performances.mission.segments. aflad tomd, bdebe, weight . cg.cg_components.load_cases.compute.
159
.performances.mission.segments.bf@etoad.models.weight.cg.cg_components.load_cases.compute_
159
.performances.mission.segments. cfastsead.models.weight.cg.cg_components.load_cases.compute_
159
.performances.mission.segments.hfdsitoad.models.weight.cg.cg_components.load_cases.compute_
160
.performances.mission.segments. spesthahangdels.weight.cg.cg_components.load_cases.compute_
160
.performances.mission.segments. tBxdtoad.models.weight.cg.cg_components.update_mlg,
168
.performances.mission.segments. tfasisddd amydels.weight.cg.constants, 170
fastoad.models.weight.constants, 192
.performances.mission.util, 151 fastoad.models.weight.mass_breakdown, 192
.propulsion, 158 fastoad.models.weight.mass_breakdown.a_airframe,
.propulsion. fuel_propulsion, 176
fastoad.models.weight.mass_breakdown.a_airframe.al_wing_we
.propulsion. fuel_propulsion.rubber_engin&(
fastoad.models.weight.mass_breakdown.a_airframe.a2_fuselac
.propulsion. fuel _propulsion.rubber_engirélconstants,
fastoad.models.weight.mass_breakdown.a_airframe.a3_empenn:
.propulsion. fuel_propulsion.rubber_enginé&2exceptions,
fastoad.models.weight.mass_breakdown.a_airframe.ad_flight_
.propulsion. fuel_propulsion.rubber_engir&2openmdao,
fastoad.models.weight.mass_breakdown.a_airframe.a5_landing
.propulsion. fuel_propulsion.rubber_engind3rubber_engine,
fastoad.models.weight.mass_breakdown.a_airframe.a6_pylons_
.weight, 193 174
.weight.cg, 170 fastoad.models.weight.mass_breakdown.a_airframe.a7_paint_v
.weight.cg.cg, 169 174
.weight.cg.cg_components, 169 fastoad.models.weight.mass_breakdown.a_airframe.constants,
.weight.cg.cg_components.compute_cg_contlf6l_surfaces
fastoad.models.weight.mass_breakdown.a_airframe. sum,

FAST-OAD, Release unknown

175 188
fastoad.models.weight.mass_breakdown.b_propul sfimsitoad.models.weight.mass_breakdown.mass_breakdown,

179 190
fastoad.models.weight.mass_breakdown.b_propul sfimsit bed engdelks wed phitt . mass_breakdown.payload,

176 191
fastoad.models.weight.mass_breakdown.b_propul sfimsitded fuede 14 nesi gieti ghetss_breakdown . update_mlw_and_mzfw,

177 191
fastoad.models.weight.mass_breakdown.b_propul sfimst dsd unmbeksmeadi gst wed Diitt, 192

177 fastoad.module_management, 199
fastoad.models.weight.mass_breakdown.b_propul sfimsitamhstaeditke management . constants, 193

178 fastoad.module_management.exceptions, 194
fastoad.models.weight.mass_breakdown.b_propul simsteath, nodule_management.service_registry,

178 195
fastoad.models.weight.mass_breakdown.c_systemsfastoad.openmdao, 207

184 fastoad.openmdao.problem, 199
fastoad.models.weight.mass_breakdown.c_systemsfadtpobcapeaysdamsyakidity checker, 200

179 fastoad.openmdao.variables, 202
fastoad.models.weight.mass_breakdown. c_systemsfa2t ddd cosempdad dystenst wiight,

180

fastoad.models.weight.mass_breakdown.c_systems.c3_navigation_systems_weight,
181
fastoad.models.weight.mass_breakdown.c_systems.c4_transmissions_systems_weight,
181
fastoad.models.weight.mass_breakdown.c_systems.c5_fixed_operational_systems_weight,
182
fastoad.models.weight.mass_breakdown.c_systems.c6_flight_kit_weight,
183
fastoad.models.weight.mass_breakdown.c_systems.constants
183
fastoad.models.weight.mass_breakdown.c_systems.sum,
183
fastoad.models.weight.mass_breakdown.constants,
189
fastoad.models.weight.mass_breakdown.cs25,
189
fastoad.models.weight.mass_breakdown.d_furniture,
188
fastoad.models.weight.mass_breakdown.d_furniture.constants,
184
fastoad.models.weight.mass_breakdown.d_furniture.dl_cargo_configuration_weight,
184
fastoad.models.weight.mass_breakdown.d_furniture.d2_passenger_seats_weight,
185
fastoad.models.weight.mass_breakdown.d_furniture.d3_food_water_weight,
185
fastoad.models.weight.mass_breakdown.d_furniture.d4_security_kit_weight,
186
fastoad.models.weight.mass_breakdown.d_furniture.d5_toilets_weight,
187
fastoad.models.weight.mass_breakdown.d_furniture.sum,
187
fastoad.models.weight.mass_breakdown.e_crew,
189
fastoad.models.weight.mass_breakdown.e_crew.crew_weight,

218 Python Module Index

INDEX

A altitude_bounds (fas-
AbstractFuelPropulsion (class in fas- toad.models.performances.mission.segments.base.FlightSegment
toad.model_base.propulsion), 79 . attribute), 135
acceleration (fastoad.model_base.flight_point.FlightPoirn?1 titude_change (fas-
attribute), 76 toad.models.performances.mission.segments.base.SegmentDefinit
active_models (fastoad. module_management.service_registry. Regiﬂngy;ﬁbdQ 4
attribute), 198 AltitudeChangeSegment (class in fas-
active_submodels (fas- toad.models.performances.mission.segments.altitude_change),
toad.io.configuration.configuration. FASTOADModel 131
attribute), 64 append () (fastoad.openmdao.variables.VariableList
add_field() (fastoad.model_base.flight_point.FlightPoint method), 204
class method), 76 Atmosphere (class in fastoad.model_base.atmosphere),
add_mission() (fastoad.gui.mission_viewer.MissionViewer 72
method), 59 AtmosphereSI (class in fas-
add_segment () (fastoad.models.performances.mission.segments.bas®S8eRebIgssisHposphere), 73
class method), 134 AutoUnitsDefaul tGroup (class in fas-
additional_variables (fas- toad.io.configuration.configuration), 63

toad.openmdao.problem. FASTOADProblem B
attribute), 200
AERODYNAMICS (fastoad.module_management.constants.ModaHeoMbmopul sionComponent (class in fas-

attribute), 193 toad.model_base.propulsion), 78
AerodynamicsHighSpeed (class in fas- BasicVarXpathTranslator (class in fas-
toad.models.aerodynamics.aerodynamics_high_speed), toad.io.xml.variable_io_standard), 69
95 breguet (fastoad.models.performances.mission.segments.base.SegmentDe;
AerodynamicsLanding (class in fas- attribute), 134
toad.models.aerodynamics.aerodynamics_landingBreguetCruiseSegment (class in fas-
95 toad.models.performances.mission.segments.cruise),
AerodynamicsLowSpeed (class in fas- 142
toad.models.aerodynamics.aerodynamics_low_sp&ad)1d Q) (fastoad.models.performances.mission.mission_definition.mission.
97 method), 127
AerodynamicsTakeoff (class in fas-
toad.models.aerodynamics.aerodynamics_takeoff Q
98 cambered (fastoad.models.aerodynamics.components.utils.cd0_lifting_surf
aircraft_geometry_plot() (in module fas- attribute), 81
toad.gui.analysis_and_plots), 58 CargoConfigurationWeight (class in fas-
AirframeWeight (class in Jas- toad.models.weight.mass_breakdown.d_furniture.dl_cargo_confi
toad.models.weight.mass_breakdown.a_airframe.sum), 184
175 CD (fastoad.model_base.flight_point.FlightPoint at-
altitude (fastoad.model_base.atmosphere.AtmosphereSI tribute), 75
property), 73 cdQ) (fastoad.models.performances.mission.polar.Polar
altitude (fastoad.model_base. flight_point.FlightPoint method), 150

attribute), 75

219

FAST-OAD, Release unknown

CDO (class in fastoad.models.aerodynamics.components.cd0)C1imbAndCruiseSegment (class in fas-
82 toad.models.performances.mission.segments.cruise),
CdOFuselage (class in fas- 141
toad.models.aerodynamics.components.cd0_fuselagmplete_£flight_point () (fas-
83 toad.models.performances.mission.segments.base.FlightSegment
Cd®HorizontalTail (class in fas- method), 136
toad.models.aerodynamics.components.cd0_ht), compute () (fastoad.model_base.propulsion.BaseOMPropulsionComponen
83 method), 78
CdONacellesAndPylons (class in fas- compute() (fastoad.models.aerodynamics.aerodynamics_landing. Compute
toad.models.aerodynamics.components.cd0_nacelles_pylonsyethod), 97
84 compute () (fastoad.models.aerodynamics.aerodynamics_landing. Compute
Cd®Total (class in fas- method), 96
toad.models.aerodynamics.components.cd0_total)compute () (fastoad.models.aerodynamics.components.cd0_fuselage. CdOFi
85 method), 83
Cd®VerticalTail (class in fas- compute() (fastoad.models.aerodynamics.components.cd0_ht.CdOHorizon
toad.models.aerodynamics.components.cd0_vt), method), 84
86 compute () (fastoad.models.aerodynamics.components.cd0_nacelles_pylon
CdOWing (class in fas- method), 84
toad.models.aerodynamics.components.cd0_wingsompute () (fastoad.models.aerodynamics.components.cd0_total. CdOTotal
86 method), 85
CdCompressibility (class in fas- compute () (fastoad.models.aerodynamics.components.cd0_vt.CdOVertical
toad.models.aerodynamics.components.cd_compressibility) method), 86
87 compute () (fastoad.models.aerodynamics.components.cd0_wing.CdOWing
CdTrim (class in fas- method), 87
toad.models.aerodynamics.components.cd_trim), compute Q) (fastoad.models.aerodynamics.components.cd_compressibility.
88 method), 87
CG (class in fastoad.models.weight.cg.cg), 169 compute () (fastoad.models.aerodynamics.components.cd_trim.CdTrim
CGRatio (class in fas- method), 88
toad.models.weight.cg.cg_components.compute_cgonpitteffd)(fastoad. models.aerodynamics.components.compute_low_speec
164 method), 89
CGRatiosForLoadCases (class in fas- compute() (fastoad.models.aerodynamics.components.compute_max_cl_lc
toad.models.weight.cg.cg_components.load_cases.compute_ragtHodjc&9es),
160 compute () (fastoad.models.aerodynamics.components.compute_polar.Con
check_problem_variables() (fas- method), 90
toad.openmdao.validity_checker. ValidityDomainChempart e () (fastoad.models.aerodynamics.components.compute_reynolds. (
class method), 202 method), 91
check_variables() (fas- compute () (fastoad.models.aerodynamics.components.high_lift_aero.Com
toad.openmdao.validity_checker.ValidityDomainChecker — method), 92
class method), 202 compute () (fastoad.models.aerodynamics.components.initialize_cl.Initiali:
CheckRecord (class in fas- method), 92
toad.openmdao.validity_checker), 200 compute () (fastoad.models.aerodynamics.components.oswald.InducedDra
chord_length (fastoad.models.geometry.profiles.profile. Profile method), 93
attribute), 118 compute () (fastoad.models.aerodynamics.components.oswald. OswaldCoej
CL (fastoad.model_base.flight_point.FlightPoint at- method), 94
tribute), 75 compute () (fastoad.models.aerodynamics.external . xfoil xfoil_polar. Xfoil Pc
CLIMB (fastoad.constants.EngineSetting attribute), 207 method), 94
CLIMB (fastoad.constants.FlightPhase attribute), 207 compute () (fastoad.models.geometry.compute_aero_center.ComputeAeroC
climb_and_descent_distance (fas- method), 120
toad.models.performances.mission.segments.cruisediveguesQrifisaSagimendels. geometry. geom_components.compute_wetted_c
attribute), 143 method), 118
climb_phases (fastoad.models.performances.mission. routescipyteRoufestoad. models. geometry.geom_components.fuselage.compute_
attribute), 150 method), 99
climb_segment (fastoad.models.performances.mission.seguempueqde fabiinbA ndleissgbegretat geom_components.fuselage.compute_
attribute), 142 method), 100

220 Index

FAST-OAD, Release unknown

compute () (fastoad.models.geometry.geom_components.fusedngait@Gpifasfocdlagedelsmppnfe Fiuseloge Giéssivatropiabidsiaimgs sion_wra

method), 100 method), 131

compute () (fastoad.models.geometry.geom_components. ht.companefids(fasnpadenioid elsovdsglinopate BdiGhnteAircraft CG
method), 101 method), 169

compute () (fastoad.models.geometry.geom_components. ht.companef s ((osupadeniodels. wigigh:Cgnaguiedtiiitoladntucompute_cg_control
method), 102 method), 162

compute () (fastoad.models.geometry.geom_components. ht.companef s (fosupadeniodehsieéightugald TdMbAP onents.compute_cg_others.
method), 103 method), 162

compute () (fastoad.models.geometry.geom_components. ht.companefds (fasnpudermiod sy aepi§htmpiag EDSnprapents.compute_cg_ratio_a
method), 103 method), 164

compute () (fastoad.models.geometry.geom_components.nacellioynddds(fiongadenade o epglog Congomp¥acalie AmdPylons G emtietry
method), 105 method), 163

compute () (fastoad.models.geometry.geom_components.vt.compateriy (fastpadenadelronds ShoopueVcbuimmdsnts. compute_cg_tanks. C
method), 106 method), 165

compute () (fastoad.models.geometry.geom_components.vt.compateriy (astpatenmadelstpbigkicogugeVdiGolpduts.compute_cg_wing.C
method), 106 method), 165

compute () (fastoad.models.geometry.geom_components.vt.compateiiy (fastpatmaddisranight ogipgitedtipisente compute_ht_cg.Com
method), 107 method), 166

compute () (fastoad.models.geometry.geom_components.vt.compateiiy (fastpatmadelsoveigihpagedd Matp onents.compute_max_cg_rc
method), 108 method), 167

compute () (fastoad.models.geometry.geom_components.vt.companeriy (fontpatenadsiseepiClongguegy ESmpements.compute_vt_cg.Com
method), 108 method), 168

compute () (fastoad.models.geometry.geom_components.wingupueXieifsscondhutedblsSOeighnpgte BSComponents.load_cases.compute.
method), 110 method), 160

compute () (fastoad.models.geometry.geom_components.wingupuiXirifsscondhutedels.alpighCognygiteGihpdplents.load_cases.compute.
method), 110 method), 161

compute () (fastoad.models.geometry.geom_components.wingupuXiefsscondhutedtls.WelGhnpgtes, | dmdpdWing. update_mlg. Updatel
method), 111 method), 168

compute () (fastoad.models.geometry.geom_components.wingupueXieifsscondhutedtls.idgeCihnmasi adkdWMing_airframe.al_wing_
method), 112 method), 170

compute () (fastoad.models.geometry.geom_components.wingupuiiirifssconhutedelsovaighg GossphrtebdloOWing airframe.a2_fusela
method), 112 method), 171

compute () (fastoad.models.geometry.geom_components.wingupuiieifsscondhutedelfweighputedd FDveakdown.a_airframe.a3_emper
method), 113 method), 172

compute () (fastoad.models.geometry.geom_components.wingupueXieifsscondhntedsisecpighingdsontetdSioeepWing frame.a4_flight_
method), 114 method), 173

compute () (fastoad.models.geometry.geom_components. wingupeipeetfisscoashutededs. weig htGomspubetakd¥ing. a_airframe.a5_landin
method), 114 method), 173

compute () (fastoad.models.geometry.geom_components.wingupuieXieifsscondhutedelstwerght.wing. CovghdoWetd raiWinge.a6_pylons
method), 115 method), 174

compute () (fastoad.models.geometry.geom_components.wingupuieXirifssconhutedelswingtiompsseXatidown. a_airframe.a7_paint_
method), 116 method), 175

compute () (fastoad.models.geometry.geom_components.wingupuieifsscoadrutedylswinpgtiompsseWakgown.b_propulsion.bl_engi
method), 116 method), 176

compute () (fastoad.models.handling_qualities.compute_staromputig(). FosupadeStodiclbwesght. mass_breakdown.b_propulsion.b2_fuel
method), 124 method), 177

compute () (fastoad.models.handling_qualities.tail_sizing. coonpud. &) dfestdiolmpodeE Tdaigght. mass_breakdown.b_propulsion.b3_unc
method), 122 method), 178

compute () (fastoad.models.handling_qualities.tail_sizing.coonpitt e @) dfestéoinpadNdAeéght. mass_breakdown.c_systems.c1_power_
method), 123 method), 179

compute () (fastoad.models.loops.compute_wing_position. Computed{igBositidimodels.weight.mass_breakdown.c_systems.c2_life_sup
method), 125 method), 180

compute () (fastoad.models.performances.mission.openmdaoompssie(Missitnodampdalsmweight. mass_breakdown.c_systems.c3_navigat
method), 130 method), 181

Index 221

FAST-OAD, Release unknown

compute () (fastoad.models.weight.mass_breakdown.c_systaaspdt aafisoussions_systems_weight. TransmissionSfstems Weight

method), 182 toad.models.performances.mission.segments.base. FixedDuration,
compute () (fastoad.models.weight.mass_breakdown.c_systems.c5_fixedtiopdyatiddal_systems_weight. FixedOperationalSystemsWeight
method), 182 compute_from() (fas-
compute () (fastoad.models.weight.mass_breakdown.c_systems.c6_fligdadkitodelig pt fitightiGit¥eiglision. segments.base. FlightSegment
method), 183 method), 136
compute () (fastoad.models.weight.mass_breakdown.cs25. Loomipute_from() (fas-
method), 189 toad.models.performances.mission.segments.cruise. BreguetCruis
compute () (fastoad.models.weight.mass_breakdown.d_furniture.d1_anegmdnnifiguration_weight. CargoConfigurationWeight
method), 184 compute_from() (fas-
compute () (fastoad.models.weight.mass_breakdown.d_furniture.d2_passkbngetelsepes forengitcPasnéssgorSeegmWeightruise. ClimbAndCri
method), 185 method), 142
compute () (fastoad.models.weight.mass_breakdown.d_furriompulSe fdmbmidter_weight. FoodWaterWeight (fas-
method), 186 toad.models.performances.mission.segments.cruise. CruiseSegmes
compute () (fastoad.models.weight.mass_breakdown.d_furniture.d4_seetivé) ki3 Yveight.SecurityKitWeight
method), 186 compute_from() (fas-
compute () (fastoad.models.weight.mass_breakdown.d_furniture.d5_ttilelsnodésshpdpfdersWecghmmission.segments.cruise. Optimal Cruis
method), 187 method), 140
compute () (fastoad.models.weight.mass_breakdown.e_crevcompubeeighoiyw Weight (fas-
method), 188 toad.models.performances.mission.segments.taxi. TaxiSegment
compute () (fastoad.models.weight.mass_breakdown.payload. Computelthdad 145
method), 191 compute_from() (fas-
compute () (fastoad.models.weight.mass_breakdown.update_mlw_andomdfuotpldqre MEWand¥4hMsion. segments.transition. Dummniy Tr
method), 192 method), 148
Compute3DMaxCL (class in fas- compute_next_flight_point() (fas-
toad.models.aerodynamics.aerodynamics_landing), toad.models.performances.mission.segments.base.FlightSegment
96 method), 136
compute_cd®_lifting_surface() (in module fas- ComputeAeroCenter (class in fas-
toad.models.aerodynamics.components.utils.cd0_lifting_surfoed)nodels.geometry.compute_aero_center),
81 120
compute_flight_points() (fas- ComputeAerodynamicsLowSpeed (class in fas-
toad.model_base.propulsion. FuelEngineSet toad.models.aerodynamics.components.compute_low_speed_aerc
method), 79 88
compute_flight_points() (fas- ComputeAircraftCG (class in fas-
toad.model_base.propulsion.IPropulsion toad.models.weight.cg.cg), 169
method), 77 ComputeB50 (class in fas-
compute_flight_points() (fas- toad.models.geometry.geom_components.wing.components.compi
toad.models.propulsion.fuel_propulsion.rubber_engine.rubbé9 engine. RubberEngine
method), 156 ComputeCG (class in fas-
compute_flight_points_from_dt4() (fas- toad.models.weight.cg.cg_components.compute_cg_ratio_aft),
toad.models.propulsion.fuel_propulsion.rubber_engine.rubbdi3 engine. RubberEngine
method), 156 ComputeCGLoadCase (class in fas-
compute_from() (fas- toad.models.weight.cg.cg_components.load_cases.compute_cg_lc
toad.models.performances.mission.base.FlightSequence 160
method), 149 ComputeCGLoadCasel (class in fas-
compute_from() (fas- toad.models.weight.cg.cg_components.load_cases.compute_cg_lc
toad.models.performances.mission.base.IFlightPart 158
method), 148 ComputeCGLoadCase?2 (class in fas-
compute_from() (fas- toad.models.weight.cg.cg_components.load_cases.compute_cg_lc
toad.models.performances.mission.routes.RangedRoute 159
method), 151 ComputeCGLoadCase3 (class in fas-
compute_from(Q) (fas- toad.models.weight.cg.cg_components.load_cases.compute_cg_lc
toad.models.performances.mission.segments.altitude_changéAltitude ChangeSegment
method), 133 ComputeCGLoadCase4 (class in fas-

222 Index

FAST-OAD, Release unknown

toad.models.weight.cg.cg_components.load_cases.compute_togdlawtbelseddyodynamics.aerodynamics_landing),

159 96

ComputeCGRatioAft (class in fas- ComputeMACWing (class in fas-
toad.models.weight.cg.cg_components.compute_cg_ratio_aftyad.models.geometry.geom_components.wing.components.compi
163 112

ComputeCLalpha (class in fas- ComputeMaxCGratio (class in fas-
toad.models.geometry.geom_components.wing.components. condhtedels.alpighy, cg.cg_components.compute_max_cg_ratio),
110 167

ComputeCnBetaFuselage (class in fas- ComputeMaxClLanding (class in fas-
toad.models.geometry.geom_components.fuselage.compute_teribtnofledslageydynamics.components.compute_max_cl_landing
99 89

ComputeControlSurfacesCG (class in fas- ComputeMFW (class in fas-

toad.models.weight.cg.cg_components.compute_cg_control toutfmeedypls. geometry.geom_components.wing.components.compi

161 113

ComputeDeltaHighLift (class in fas- ComputeMTOW (class in fas-
toad.models.aerodynamics.components.high_lift_aero), toad.models.performances.mission.openmdao.link_mtow),
91 128

ComputeFuselageGeometryBasic (class in fas- ComputeNacelleAndPylonsGeometry (class in fas-
toad.models.geometry.geom_components.fuselage.compute_foadlagedels. geometry.geom_components.nacelle_pylons.compute
99 104

ComputeFuselageGeometryCabinSizing (class infas- ComputeOthersCG (class in fas-
toad.models.geometry.geom_components.fuselage.compute_foadlagedels.weight.cg.cg_components.compute_cg_others),
100 162

ComputeGlobalCG (class in fas- ComputePayload (class in fas-
toad.models.weight.cg.cg_components.compute_global_cg) toad.models.weight.mass_breakdown.payload),
166 191

ComputeHorizontalTailGeometry (class in fas- ComputePolar (class in fas-
toad.models.geometry.geom_components.ht.compute_horizotoad.meillels.aerodynamics.components.compute_polar),
104 90

ComputeHTArea (class in fas- ComputeReynolds (class in fas-
toad.models.handling_qualities.tail_sizing.compute_ht_areapad.models.aerodynamics.components.compute_reynolds),
121 91

ComputeHTcg (class in fas- ComputeStaticMargin (class in fas-
toad.models.weight.cg.cg_components.compute_ht_cg), toad.models.handling_qualities.compute_static_margin),
166 123

ComputeHTChord (class in fas- ComputeSweepWing (class in fas-
toad.models.geometry.geom_components.ht.components.corpademioidelsogelsyetry. geom_components.wing.components.compi
101 113

ComputeHTClalpha (class in fas- ComputeTailAreas (class in fas-
toad.models.geometry.geom_components.ht.components.compademioidels. hipldiin g _qualities.tail_sizing.compute_tail_areas),
102 122

ComputeHTMAC (class in fas- ComputeTanksCG (class in fas-
toad.models.geometry.geom_components.ht.components.cortpademioideicioight.cg.cg_components.compute_cg_tanks),
102 164

ComputeHTSweep (class in fas- ComputeToCWing (class in fas-
toad.models.geometry.geom_components.ht.components.compademioidslyggoynetry. geom_components.wing.components.compi
103 114

ComputeL1AndL4Wing (class in fas- ComputeVerticalTailGeometry (class in fas-
toad.models.geometry.geom_components.wing.components.coaghutedéls.tbymetry. geom_components.vt.compute_vertical_tai
111 109

ComputeL2AndL3Wing (class in fas- ComputeVTArea (class in fas-
toad.models.geometry.geom_components.wing.components.coagputedts.liyudling _qualities.tail_sizing.compute_vt_area),
111 123

ComputeMachReynolds (class in fas- ComputeVTcg (class in fas-

Index 223

FAST-OAD, Release unknown

toad.models.weight.cg.cg_components.compute_vt_cg), toad.models.weight.mass_breakdown.e_crew.crew_weight),
167 188
ComputeVTChords (class in fas- CRUISE (fastoad.constants.EngineSetting attribute), 207
toad.models.geometry.geom_components.vt.comp &iRGES Edifapsttadve oalstandss) FlightPhase attribute), 207
105 cruise (fastoad.models.performances.mission.segments.base.SegmentDefil
ComputeVTClalpha (class in fas- attribute), 134
toad.models.geometry.geom_components.vt.comp@mii s eopipstanceclalpha), (fas-
106 toad.models.performances.mission.routes.SimpleRoute
ComputeVIDistance (class in fas- property), 150
toad.models.geometry.geom_components.vt.comp@pils eospytent_distance), (fas-
107 toad.models.performances.mission.routes.SimpleRoute
ComputeVTMAC (class in fas- attribute), 150
toad.models.geometry.geom_components.vt.comp @i s eospaéd (fustaad) models.performances.mission.routes.SimpleRoute
107 property), 150
ComputeVTSweep (class in fas- CruiseSegment (class in fas-
toad.models.geometry.geom_components.vt.components.contpatemadsisgepiformances.mission.segments.cruise),
108 138
ComputeWetArealWing (class in fas-
toad.models.geometry.geom_components.wing. corle-;onents. compute_wet_area_wing),
115 DataFile (class in fastoad.io.variable_io), 71
ComputeWettedArea (class in Jas- dataframe (fastoad.gui.optimization_viewer.OptimizationViewer
toad.models.geometry.geom_components.compute_wetted_agewxjbute), 60
117 dataframe (fastoad.gui.variable_viewer.VariableViewer
ComputeWingArea (class in fas- attribute), 61
toad.models.loops.compute_wing_area), DEFAULT_IO_ATTRIBUTE (in module fas-
124 toad.io.xml.constants), 66
ComputeWingCG (class in fas- DEFAULT_UNIT_ATTRIBUTE (in module fas-
toad.models.weight.cg.cg_components.compute_cg_wing), toad.io.xml.constants), 66
165 definition (fastoad.models.performances.mission.mission_definition.mis.
ComputeWingGeometry (class in fas- property), 126
toad.models.geometry.geom_components.wing.cordpteniningh_cl (fastoad.models.performances.mission.polar.Polar
117 property), 149
ComputeWingPosition (class in fas- delta_t (fastoad.model_base.atmosphere. Atmosphere
toad.models.loops.compute_wing_position), property), 72
125 density (fastoad.model_base.atmosphere.Atmosphere
ComputeXWing (class in fas- property), 713
toad.models.geometry.geom_components.wing.coidpseentfascoagidpernmdagariables. Variable property),
115 203
ComputeYWing (class in fas- DESCENT (fastoad.constants.FlightPhase attribute), 207
toad.models.geometry.geom_components.wing.cordpecens.qohigade_y_wing), (fas-
116 toad.models.performances.mission.routes.SimpleRoute
configure() (fastoad.io.configuration.configuration.AutoUnitsDefaudiéribute), 150
method), 63 description (fastoad.openmdao.variables.Variable
CONSTANT_VALUE (fastoad.models.performances.mission.segments.bapedpléghpyegipent
attribute), 136 display() (fastoad.gui.mission_viewer.MissionViewer
convert() (fastoad.constants.EngineSetting class method), 59
method), 207 display Q) (fastoad.gui.optimization_viewer.OptimizationViewer
Coordinates2D (class in fas- method), 60
toad.models.geometry.profiles.profile), 118 display() (fastoad.gui.variable_viewer.VariableViewer
create() (fastoad.model_base. flight_point.FlightPoint method), 61
class method), 76 distance_accuracy (fas-
create_list() (fastoad.model_base.flight_point.FlightPoint toad.models.performances.mission.routes.RangedRoute
class method), 76 attribute), 151
CrewWeight (class in fas-

224 Index

FAST-OAD, Release unknown

drag (fastoad.model_base.flight_point.FlightPoint module, 207
attribute), 75 fastoad.cmd
drag_polar_plot() (in module fas- module, 57
toad.gui.analysis_and_plots), 58 fastoad.cmd. api
DummyTransitionSegment (class in fas- module, 54
toad.models.performances.mission.segments.transfdsnpad . cmd . exceptions
146 module, 57
fastoad.cmd. fast
E module, 57
EmpennageWeight (class in fas- fastoad.constants
toad.models.weight.mass_breakdown.a_airframe.a3_cimpdilegeOeight),
172 fastoad.exceptions
engine_setting (fas- module, 208
toad.model_base.flight_point. FlightPoint fastoad.gui
attribute), 75 module, 62
engine_setting (fas- fastoad.gui.analysis_and_plots
toad.models.performances.mission.segments.base. FlighSeudend 7
attribute), 135 fastoad.gui.exceptions
EngineSetting (class in fastoad.constants), 207 module, 59
EngineWeight (class in fas- fastoad.gui.mission_viewer
toad.models.weight.mass_breakdown.b_propulsion.b1 eadwle wéight),
176 fastoad.gui.optimization_viewer
equivalent_airspeed (fas- module, 60
toad.model_base.atmosphere.Atmosphere fastoad.gui.variable_viewer
property), 73 module, 61
equivalent_airspeed (fas- fastoad.io
toad.model_base.flight_point. FlightPoint module, 72
attribute), 75 fastoad.io.configuration
evaluate_problem() (in module fastoad.cmd.api), 56 module, 65
explore_folder() (fas- fastoad.io.configuration.configuration
toad.module_management.service_registry.RegisterSemagule, 62
class method), 196 fastoad.io.configuration.exceptions
module, 64
F fastoad.io.formatter
FastBadSystemOptionError, 194 module, 70
FastBundleLoaderDuplicateFactoryError, 194 fastoad.io.variable_io
FastBundleLoaderUnknownFactoryNameError, 194 module, 70
FASTConfigurationBadOpenMDAOInstructionError, fastoad.io.xml
65 module, 70
FASTConfigurationBaseKeyBuildingError, 64 fastoad.io.xml.constants
FASTConfigurationNanInInputFile, 65 module, 66
FastError, 208 fastoad.io.xml.exceptions
FastFileExistsError, 57 module, 66
FastFlightPointUnexpectedKeywordArgument, 149 fastoad.io.xml.translator
FastFlightSegmentIncompleteFlightPoint, 149 module, 67
FastFlightSegmentUnexpectedKeywordArgument, ~ fastoad.io.xml.variable io_base
149 module, 68
FastIncompatibleServiceClassError, 194 fastoad.io.xml.variable_io_legacy
FastMissingFile, 59 module, 68
FastMissionFileMissingMissionNameError, 126 fastoad.io.xml.variable_io_standard
FastNoSubmodelFoundError, 194 module, 69
fastoad fastoad.model_base
module, 209 module, 80
fastoad.api fastoad.model_base.atmosphere
Index 225

FAST-OAD, Release unknown

aerodynamics.
aerodynamics.
aerodynamics.

aerodynamics.

components.utils.friction_drac

constants

external

external .xfoil

aerodynamics.
aerodynamics.

constants

geometry

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

module, 72 module, 80
fastoad.model_base.flight_point fastoad.models.
module, 74 module, 82
fastoad.model_base.propulsion fastoad.models.
module, 77 module, 98
fastoad.models fastoad.models.
module, 193 module, 95
fastoad.models.aerodynamics fastoad.models.
module, 98 module, 95
fastoad.models.aerodynamics.aerodynamics_high_fpeeshd.models.
module, 95 module, 94
fastoad.models.aerodynamics.aerodynamics_landif@stoad.models.
module, 95 module, 94
fastoad.models.aerodynamics.aerodynamics_low_sfestbad.models.
module, 97 module, 193
fastoad.models.aerodynamics.aerodynamics_takeofffstoad.models.
module, 98 module, 121
fastoad.models.aerodynamics.components fastoad.models.
module, 94 module, 120
fastoad.models.aerodynamics.components.cd® fastoad.models.
module, 82 module, 120
fastoad.models.aerodynamics.components.cd0_fustdsigead.models.
module, 83 module, 118
fastoad.models.aerodynamics.components.cd0O_ht fastoad.models.
module, 83 module, 117
fastoad.models.aerodynamics.components.cd®_nacEddesapyimde] s .
module, 84 module, 101
fastoad.models.aerodynamics.components.cd0_totfdstoad.models.
module, 85 module, 99
fastoad.models.aerodynamics.components.cd®_vt fastoad.models.
module, 86 module, 99
fastoad.models.aerodynamics.components.cd®_winfastoad.models.
module, 86 module, 104
fastoad.models.aerodynamics.components.cd_compfessddd Indgels.
module, 87 module, 104
fastoad.models.aerodynamics.components.cd_trimfastoad.models.
module, 88 module, 101
fastoad.models.aerodynamics.components.computefdstwosparadeksogeometry.
module, 88 module, 102
fastoad.models.aerodynamics.components.computefasioad. ladelinggeometry.
module, 89 module, 102
fastoad.models.aerodynamics.components. computefpoia@ad.models.
module, 90 module, 103
fastoad.models.aerodynamics.components. computefasyoad dsodels.
module, 91 module, 104
fastoad.models.aerodynamics.components.high_lifftst@awd.models.
module, 91 module, 105
fastoad.models.aerodynamics.components.initialfizetadd.models.
module, 92 module, 104
fastoad.models.aerodynamics.components.oswald fastoad.models.
module, 93 module, 109
fastoad.models.aerodynamics.components.utils fastoad.models.
module, 82 module, 109
fastoad.models.aerodynamics.components.utils. cfsidaft imydels fgeemetry .

external .xfoil.xfo0il699

external.xfoil.xfoil_polar

compute_aero_center
constants
geom_components

geom_components.compute_wetted_are

geom_components. fuselage

geom_components.fuselage.compute_c

geom_components.fuselage.compute_

geom_components.ht

geom_components.ht.components

geom_components.ht.components. cony

geom_components.ht.components. comny

geom_components.ht.components.comr

geom_components.ht.components. cony

geom_components.ht.compute_horizor

geom_components.nacelle_pylons
geom_components.nacelle_pylons.cor
geom_components.vt
geom_components.vt.components

geom_components.vt.components. comg

226

Index

FAST-OAD, Release unknown

module, 105

fastoad.models.

module, 106

fastoad.models.

module, 107
fastoad.models
module, 107

fastoad.models.

module, 108

fastoad.models.

module, 109

fastoad.models.

module, 117

fastoad.models.

module, 117
fastoad.models
module, 109

fastoad.models.

module, 110

fastoad.models.

module, 111

fastoad.models.

module, 111

fastoad.models.

module, 112
fastoad.models
module, 113

fastoad.models.

module, 113

fastoad.models.

module, 114

fastoad.models.

module, 115

fastoad.models.

module, 115
fastoad.models
module, 116

fastoad.models.

module, 117

fastoad.models.

module, 121

fastoad.models.

module, 120
fastoad.models
module, 118

fastoad.models.

module, 119
fastoad.models
module, 124
fastoad.models
module, 123
fastoad.models
module, 123
fastoad.models

module, 121
geometry.geom_components. vt . combasrendd. modplis chartdHlmd pnzalities.tail_sizing.compute_tail
module, 122
geometry.geom_components.vt.combasiendd. modpis chartd Hiisg.ameel i ties.tail_sizing.compute_vt_:
module, 123
.geometry.geom_components. vt .compasiendd.. mohpls el odpmac
module, 125
geometry.geom_components. vt .combmsiendd. modpld el qdp sweappute_wing_area
module, 124
geometry.geom_components.vt.combaseoatmdedells thidps . compute_wing_position
module, 125
geometry.geom_components.wing fastoad.models.performances
module, 152
geometry.geom_components.wing.cbmpomehimodels.performances.mission
module, 152
.geometry.geom_components.wing . chapomahimadehpiper borifances .mission.base
module, 148
geometry.geom_components.wing . chapooeh isadelpuger fdrmdphas .mission. exceptions
module, 149
geometry.geom_components.wing . chmpoomshimsodelpuger idri#nces.mission.mission_definition
module, 128
geometry.geom_components.wing.chaponehisadeolpiperi@ridnces.mission.mission_definition.exc
module, 126
geometry.geom_components.wing . chapooat isadelpuger foxmarniogs .mission.mission_definition.mis
module, 126
.geometry.geom_components.wing . chapooehimsodehpiper fifrmances . mission.mission_definition.scl
module, 128
geometry.geom_components.wing . chapomahimodeipuier Soemmaedsigni ssion . openmdao
module, 131
geometry.geom_components.wing . champoosthimsodeipuger fomarnogs . mission. openmdao. link_mtow
module, 128
geometry.geom_components.wing . chaporehisadelpuper fetmareas wihgsion . openmdao.mission
module, 129
geometry.geom_components.wing . chapooehimsodeipuper kommagces . mission. openmdao.mission_wrapy
module, 130
.geometry.geom_components.wing. chaporahimadepiper fomriagces .mission. polar
module, 149
geometry.geom_components.wing.chapudad wiodels . performances.mission.routes
module, 150
geometry.geometry fastoad.models.performances.mission.segments
module, 148
geometry.profiles fastoad.models.performances.mission.segments.altitude_char
module, 131
.geometry.profiles.profile fastoad.models.performances.mission.segments.base
module, 134
geometry.profiles.profile_gettefastoad.models.performances.mission.segments.cruise
module, 138
.handling_qualities fastoad.models.performances.mission.segments.hold
module, 143
.handling_qualities.compute_statfizstmeadimodels.performances.mission.segments.speed_change
module, 144
.handling_qualities.tail_sizing fastoad.models.performances.mission.segments.taxi
module, 145
.handling_qualities.tail_sizing.fompede, ddekeaperformances.mission.segments.transition

Index

227

FAST-OAD, Release unknown

module, 146
fastoad.models
module, 151
fastoad.models
module, 158
fastoad.models
module, 158
fastoad.models
module, 158
fastoad.models
module, 152
fastoad.models
module, 152
fastoad.models
module, 152
fastoad.models
module, 154
fastoad.models
module, 193
fastoad.models
module, 170
fastoad.models
module, 169
fastoad.models
module, 169
fastoad.models
module, 161
fastoad.models
module, 162
fastoad.models
module, 163
fastoad.models
module, 164
fastoad.models
module, 165
fastoad.models
module, 166
fastoad.models
module, 166
fastoad.models
module, 167
fastoad.models
module, 167
fastoad.models
module, 161
fastoad.models
module, 158
fastoad.models
module, 159
fastoad.models
module, 159
fastoad.models
module, 159
fastoad.models

.weight

.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.
.weight.

.weight.

.propulsion

.propulsion.
.propulsion.
.propulsion.
.propulsion.
.propulsion.

.propulsion.

<9

cg.

cg.

<9

cg.

cg.

cg.

cg.

cg.

cg.

cg.

cg.

cg.

cg.

cg.

cg.

cg.

<9

.performances.mission.util

cg

cg_components

.Cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components.

cg_components

cg_components

.Ccg_components.

fuel_propulsion

fuel_propulsion.
fuel_propulsion.
fuel_propulsion.
fuel_propulsion.

fuel_propulsion.

module, 160

module, 160

fastoad.models.

module, 168
fastoad.models
module, 170
module, 192
module, 192
module, 176

module, 170

module, 171

fastoad.models.

module, 172

fastoad.models.

module, 172

fastoad.models.

module, 173

fastoad.models.

module, 174

comput ef xgt aadh imode kainfatgist . mass_breakdown.

module, 174

computefagtoddarsdel s.

module, 175

computefagt amd imodeflts .

module, 175

computefagtaadkeodels.

module, 179

computefagtoddgnodels.

module, 176

computefadobad., mgdels.

module, 177

computefdsttaad.models.

module, 177

computef asixpad). maddbs .

module, 178

computefatt@ad.models.

module, 178

load_cafastoad.models.

module, 184

load_catest cathpudde by, nebglta sedss_breakdown.

module, 179

load_catest aadipudide by, tebglta se?ss_breakdown.

module, 180
module, 181

module, 181

fastoad.models.

.weight.

rubbfaserad neodels.

weight.
weight.
cg.constants

weight.constants

rubbfas emad neadwhs teetitgh t . mass_breakdown
rubbfas erad modxteptd bgist . mass_breakdown.
rubbfas evad neadpkamdanght . mass_breakdown.
rubbfas erad neadeibbeare bglyti meass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.

weight.mass_breakdown.

weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.
weight.mass_breakdown.

weight.mass_breakdown.

. load_cafast aathpmide by, weobglra sedss_breakdown.

. load_cafest cadpmice by, ebghrasealss_breakdown

load_cafest acadymdce by, Hebghra sea e dereakdown

a_airframe

b_propulsi
b_propulsi
b_propulsi
b_propulsi
b_propulsi
b_propulsi
c_systems

c_systems.
c_systems.
c_systems.
.c_systems.

.C_systems.

228

Index

a_airframe.

a_airframe.

a_airframe.

a_airframe.

a_airframe.

a_airframe.

a_airframe.

a_airframe.

a_airframe.

cg.cg_components.load_cases.compute._

cg.cg_components.update_mlg

al_wing_we
a2_fuselag
a3_empennc
a4_flight.
a5_landing
a6_pylons_
a7_paint_v
constants
sum

on
on.bl_engir
on.b2_fuel.
on.b3_uncor
on.constant

on.sum

cl_power_sy
c2_life_sug
c3_navigat]
c4_transmis

c5_fixed_og

FAST-OAD, Release unknown

module, 182
fastoad.models
module, 183
fastoad.models
module, 183
fastoad.models
module, 183
fastoad.models
module, 189
fastoad.models
module, 189
fastoad.models
module, 188
fastoad.models
module, 184
fastoad.models
module, 184
fastoad.models
module, 185
fastoad.models
module, 185
fastoad.models
module, 186
fastoad.models
module, 187
fastoad.models
module, 187
fastoad.models
module, 189
fastoad.models
module, 188
fastoad.models
module, 190
fastoad.models
module, 191
fastoad.models
module, 191
fastoad.models
module, 192

.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight
.weight

.weight

.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.
.mass_breakdown.

.weight

fastoad.module_management

module, 199

fastoad.module_management.constants

module, 193

fastoad.module_management.exceptions

module, 194

fastoad.module_management.service_registry

module, 202
c_systemsfa6tddd ghygekidawailgtsopt
module, 206
c_systemsEASTRARNdde 1 (class in
toad.io.configuration.configuration), 64
c_systemsEASHOADProblem (class in fastoad.openmdao.problem),
199
constantsFASTOADProblemConfigurator (class in
toad.io.configuration.configuration), 62
FastRubberEngineInconsistentInputParametersError,
152
d_furnitukastTooManySubmodelsError, 194
FastUnexpectedKeywordArgument, 208
d_furni tufes dimstemtEngineSettingError, 208
FastUnknownSubmodelError, 195
d_furni tuFes dim Haogoa coerligpl-bdd el aredfigihlte Error, 66
FastXPathEvalError, 66
d_furni tuFes d2p prskenyela seehsp lied s, 66
FastXpathTranslatorInconsistentLists, 66
d_furni tuEes d8pfdotrarat bart oreligghitabl eError, 66
FastXpathTranslatorXPathError, 66
d_furnitufieled_secufistyal puiweiighte_viewer.VariableViewer
attribute), 61
d_furni tufele Spadi 16ustoadiighariable_io.DataFile property),
71
d_furnituEExedilurationSegment (class in fas-
toad.models.performances.mission.segments.base),
137
FixedOperationalSystemsWeight (class in fas-
e_crew.crew_weighdad. models.weight.mass_breakdown.c_systems.c5_fixed_operatic
182
mass_breaktbgimt _distance (fas-
toad.models.performances.mission.routes.RangedRoute
attribute), 151
flight_points (fastoad.models.performances.mission.openmdao.mission.
update_mlw_and_mpfuperty), 129
flight_sequence (fas-
toad.models.performances.mission.base.FlightSequence
property), 149

fas-

fas-

cs25

e_crew

payload

FlightControlsWeight (class in fas-
toad.models.weight.mass_breakdown.a_airframe.a4_flight_contr
172

FlightKitWeight (class in fas-
toad.models.weight.mass_breakdown.c_systems.c6_flight_kit_wei
183

FlightPhase (class in fastoad.constants), 207

module, 195 FlightPoint (class in fastoad.model_base.flight_point),
fastoad.openmdao 74
module, 207 FlightSegment (class in fas-
fastoad.openmdao.problem toad.models.performances.mission.segments.base),
module, 199 134
fastoad.openmdao.validity_checker FlightSequence (class in fas-
module, 200 toad.models.performances.mission.base),
fastoad.openmdao.variables 149
Index 229

FAST-OAD, Release unknown

toad.models.performances.mission.mission_definition.mission_bu

get_lower_side() (fas-
toad.models.geometry.profiles.profile. Profile
method), 119

get_mean_line() (fas-

FoodWaterWeight (class in fas-
toad.models.weight.mass_breakdown.d_furniture.d3_food_waethodyi$hi)),
185

formatter (fastoad.io.variable_io.DataFile property),
71

from_dataframe() (fas-
toad.openmdao.variables.VariableList class

method), 205

from_dict() (fastoad.openmdao.variables.VariableList
class method), 205

from_ivc() (fastoad.openmdao.variables.VariableList
class method), 205

toad.models.geometry.profiles.profile. Profile
method), 119

get_model () (fastoad.model_base.propulsion.IOMPropulsionWrapper
static method), 78

get_model Q) (fastoad.models.propulsion.fuel_propulsion.rubber_engine.o
static method), 153

from_problem() (fas- get_openmdao_keys() (fas-
toad.openmdao.variables.VariableList class toad.openmdao.variables.Variable class
method), 205 method), 203

from_unconnected_inputs() (fas- get_optimization_definition() (fas-
toad.openmdao.variables.VariableList class toad.io.configuration.configuration.FASTOADProblemConfigurat
method), 206 method), 63

FuelEngineSet (class in fas- get_optimum_ClCd() (in module fas-
toad.model_base.propulsion), 79 toad.models.aerodynamics.components.compute_polar),

FuelLinesWeight (class in fas- 90
toad.models.weight.mass_breakdown.b_propulsiog&t_ypuwdblisms W¢agtudd.io.configuration.configuration. FASTOADProblen
177 method), 62

FurnitureWeight (class in fas- get_profile() (in module fas-
toad.models.weight.mass_breakdown.d_furniture.sum), toad.models.geometry.profiles.profile_getter),
187 119

FuselageWleight (class in fas- get_properties() (fas-

toad.models.weight.mass_breakdown.a_airframe.a2_fuselagoadaigiyle_management.service_registry.RegisterService

171

G

generate_configuration_file() (in module fas-
toad.cmd.api), 54

generate_inputs () (in module fastoad.cmd.api), 54

Geometry (class in fastoad.models.geometry.geometry),
121

GEOMETRY (fastoad.module_management.constants.ModelDomain

attribute), 193
get_altitude()
toad.model_base.atmosphere.Atmosphere
method), 72
get_closest_flight_level() (in module fas-
toad.models.performances.mission.util), 151
get_consumed_mass () (fas-

(fas-

toad.model_base.propulsion.AbstractFuel Propuls@t_provider_ids ()

method), 79
get_consumed_mass () (fas-
toad.model_base.propulsion.IPropulsion
method), 77
get_flat_plate_friction_drag_coefficient()
(in module fas-

method), 195

get_properties() (fas-
toad.module_management.service_registry.RegisterSpecializedSe
method), 197

get_provider() (fas-
toad.module_management.service_registry.RegisterService
class method), 196

get_provider_description() (fas-

toad.module_management.service_registry.RegisterService

class method), 196

get_provider_domain() (fas-
toad.module_management.service_registry.RegisterService
class method), 196

get_provider_ids() (fas-
toad.module_management.service_registry.RegisterService
class method), 196

(fas-
toad.module_management.service_registry.RegisterSpecializedSe
class method), 197

get_relative_thickness() (fas-
toad.models.geometry.profiles.profile. Profile
method), 119

get_reserve() (fastoad.models.performances.mission.mission_definition.

toad.models.aerodynamics.components.utils.friction_drag), method), 127

82
get_input_variables()

(fas-

get_reserve_variable_name() (fas-
toad.models.performances.mission.openmdao.mission_wrapper.V

230

Index

FAST-OAD, Release unknown

method), 131 |

get_route_ranges() (fas- 1pLE (fastoad.constants. EngmeSettmg attribute), 207
toad.models.performances.mission.mission deﬁmggilm{tpgfémlderMzs&(mguz er in fas-

method), 1277 toad.models.performances.mission.base),
get_segment_class() (fas- 148

toad.models.performances.mission.segments. base.ﬂq&wg@fgﬁ'@@ﬂﬁ cient (class in fas-

class method), 134 toad.models.aerodynamics.components.oswald),

get_sides () (fastoad.models.geometry.profiles.profile. Profile 03
method), 119 INITIAL_CLIMB (fastoad.constants.FlightPhase at-

get_submodel () (fas- tribute), 207
toad.module_management.service_registry.RegistgpSypmade) o ¢y (fastoad.models.aerodynamics.aerodynamics_landing.Aero
class method), 198 method), 96

get_unique_mission_name() (fas- initialize O (fastoad.models.aerodynamics.components.cd0.CDO

toad.models.performances.mission.mission_definition.missiqp,Jpuj egélzsszonBullder

method), 127 initialize() (fastoad.models.aerodynamics.components.cd0_fuselage.C
get_units Q) (fastoad.model_base.flight_point.FlightPoint method), 83

class method), 76 initialize() (fastoad.models.aerodynamics.components.cd0_ht.CdOHor

get_upper_side() (fas- method), 84
toad.models.geometry.profiles.profile. Profile initialize () (fastoad.models.aerodynamics.components.cd0_nacelles_p
method), 119 method), 84

get_variable_name () (fas- initialize QO (fastoad.models.aerodynamics.components.cd0_total. CdOT
toad.io.xml.translator.VarXpathTranslator method), 85
method), 67 initialize() (fastoad.models.aerodynamics.components.cd0_vt.CdOVert

get_variable_name() (fas- method), 86
toad.io.xml.variable_io_standard. BasicVarXpathTygusl¢4¥i ze () (fastoad.models.aerodynamics.components.cd0_wing. CdOV
method), 69 method), 86

get_variables() (fas- initialize QO (fastoad.models.aerodynamics.components.cd_trim.CdTrim
toad.gui.optimization_viewer.OptimizationViewer method), 88
method), 60 initialize() (fastoad.models.aerodynamics.components.compute_polar.

get_variables() (fas- method), 90
toad.gui.variable_viewer.VariableViewer initialize(Q) (fastoad.models.aerodynamics.components.compute_reynol
method), 61 method), 91

get_wrapper () (fastoad.model_base.propulsion.BaseOMP, fﬁE’Elﬂﬂ’lQ@’@%%ad models.aerodynamics.components.high_lift_aero.(
static method), 79 method), 91

get_wrapper () (fastoad.models.propulsion fuelJrOPuZSZOw@éﬁl}fﬁg@eyﬁym%ﬁég%kﬁpﬁﬂm@%%%s initialize_cl.Ini
static method), 154 method), 92

get_xpath(Q (fastoad.io.xml.translator.VarXpathTranslator 5 +5 a1ize O (fastoad.models.aerodynamics.components.oswald.Induced
method), 67 method), 93

get_xpath() (fastoad.io.xml.variable_io_standard. Baswvcﬁ.’ﬁ%@f%@?fastoad models.aerodynamics.components.oswald.Oswald(
method), 70 method), 93

ground_distance (fas- initialize QO (fastoad.models.aerodynamics.external.xfoil. xfoil_polar. Xfc
toad.model_base.flight_point.FlightPoint method), 94
attribute), 75 initialize() (fastoad.models.geometry.geometry.Geometry

H method), 121

initialize() (fastoad.models.handling_qualities.compute_static_margin

HANDLING_QUALITIES (fas- method), 123
toad.module_management.constants.ModelDomaiimitialize () (fastoad.models.performances.mission.openmdao.mission.)
attribute), 193 method), 129

HIGH_SPEED (fastoad.models.aerodynamics.constants. Polarfype ialize) (fastoad.models.performances.mission.openmdao.mission.
attribute), 98 method), 130

HoldSegment (class in fas- initialize() (fastoad.models.weight.cg.cg_components.compute_cg_rati
toad.models.performances.mission.segments.hold), method), 163
143 initialize() (fastoad.models.weight.cg.cg_components.compute_cg_tan

method), 164

Index 231

FAST-OAD, Release unknown

initialize(Q) (fastoad.models.weight.cg.cg_components.ldddicuseatueffustoag. dparvateo hasidGonchetde (L beckResord

method), 160 property), 200
initialize() (fastoad.models.weight.mass_breakdown.mdskssbrasddiehesiu{aBneadidbesfastoad.cmd.api), 55
method), 190 list_variables() (in module fastoad.cmd.api), 55
initialize() (fastoad.models.weight.weight.Weight load() (fastoad.gui.optimization_viewer.OptimizationViewer
method), 192 method), 60
InitializeClPolar (class in fas- load(Q) (fastoad.gui.variable_viewer.VariableViewer
toad.models.aerodynamics.components.initialize_cl), method), 61
92 load Q) (fastoad.io.configuration.configuration. FASTOADProblemConfigur
input_file_path (fas- method), 62
toad.io.configuration.configuration. FASTOAD ProbladConfigstratdrnio.variable_io.DataFile method), 71
property), 62 load) (fastoad.models.performances.mission.mission_definition.schema.
installed_weight() (fas- method), 128
toad.models.propulsion.fuel_propulsion.rubber_engiad. rvdbiabdiegsd. RubberEngine (fas-
method), 157 toad. gui.optimization_viewer. OptimizationViewer
interaction_coeff (fas- method), 60
toad.models.aerodynamics.components.utils.cd0_lisay_wsarfuablef g SurfaceGeometry (fas-
attribute), 81 toad.gui.variable_viewer.VariableViewer
interrupt_if_getting_further_from_target (fas- method), 61
toad.models.performances.mission.segments.baselldiglgSefnein fastoad. models.weight.mass_breakdown.cs25),
attribute), 136 189
IOMPropulsionWrapper (class in fas- log_records () (fastoad.openmdao.validity_checker.ValidityDomainChecl
toad.model_base.propulsion), 78 static method), 202
IPropulsion (class in fastoad.model_base.propulsion), logger_name (fastoad.openmdao.validity_checker.CheckRecord
77 property), 200
is_input (fastoad.openmdao.variables.Variable prop- LONG (fastoad.constants.RangeCategory attribute), 208
erty), 203 LOW_SPEED (fastoad.models.aerodynamics.constants.PolarType
IVariableIOFormatter (class in fastoad.io.formatter), attribute), 98
70

M

K MAC_length (fastoad.models.aerodynamics.components.utils.cd0_lifting _s:
key (fastoad.io.configuration.exceptions. FASTConfigurationBaseKey BuildigEy; 19

attribute), 65 mach (fastoad.model_base.atmosphere. Atmosphere prop-
kinematic_viscosity (fas- erty), 73
toad.model_base.atmosphere.Atmosphere mach (fastoad.model_base.flight_point.FlightPoint
property), 13 attribute), 75
mach_bounds (fastoad.models.performances.mission.segments.base.Flight.
L attribute), 136

LANDING (fastoad.constants.FlightPhase attribute), 207 ~ Main (class in fastoad.cmd.fast), 57
LANDING (fastoad.models.aerodynamics.constants. PolarTyp#ain () (in module fastoad.cmd.fast), 57

attribute), 98 ManualThrustSegment (class in fas-
LandingGearWeight (class in fas- toad.models.performances.mission.segments.base),

toad.models.weight.mass_breakdown.a_airframe.a5_landing38ear_weight),

173 mass (fastoad.model_base.flight_point.FlightPoint
length() (fastoad.models.propulsion.fuel_propulsion.rubber_engineatitibeitengine. RubberEngine

method), 157 mass_breakdown_bar_plot() (in module fas-
LifeSupportSystemsWeight (class in fas- toad.gui.analysis_and_plots), 58

toad.models.weight.mass_breakdown.c_systems.c nagB_hppalsdommeswadkoh()) (in module fas-

180 toad.gui.analysis_and_plots), 59
LiftingSurfaceGeometry (class in fas- mass_ratio (fastoad.models.performances.mission.segments.transition. Du

toad.models.aerodynamics.components.utils.cd0_lifting_surfidigébute), 148

80 MassBreakdown (class in fas-
limit_units (fastoad.openmdao.validity_checker. CheckRecord toad.models.weight.mass_breakdown.mass_breakdown),

property), 200 190

232 Index

FAST-OAD, Release unknown

max () (fastoad.constants.RangeCategory method), 208

fastoad.

io.configuration, 65

max_thrust Q) (fastoad.models.propulsion.fuel_propulsion.rubbéasdigdde.inhbemn fiigimaRubhedomgiiguration,

method), 157

MaxCGRatiosForLoadCases (class in fas-

62
fastoad.

io.configuration.exceptions, 64

toad.models.weight.cg.cg_components.load_cases.compagt ogdlamichiczsatter, 70

161
maximum_flight_level

(fas-

fastoad.
fastoad.

io.variable_io, 70
io.xml, 70

toad.models.performances.mission.segments.altitude_chasgeaddtitialeitlingefsgrmans, 66

attribute), 133
maximum_flight_level

(fas-

fastoad.
fastoad.

io.xml.exceptions, 66
io.xml.translator, 67

toad.models.performances.mission.segments.cruise. ClitdstvolCruiceSaginarariable_io_base, 68

attribute), 142
MEDIUM (fastoad.constants.RangeCategory attribute), 208
metadata (fastoad.openmdao.variables.Variable at-

tribute), 203
metadata_keys()

(fas-

fastoad.
fastoad.
fastoad.
fastoad.
fastoad

io.xml.variable_io_legacy, 68
io.xml.variable_io_standard, 69
model_base, 80
model_base.atmosphere, 72

.model_base.flight_point, 74

model_base.propulsion, 77

models, 193

models.aerodynamics, 98
models.aerodynamics.aerodynamics_high_speed,

models.aerodynamics.aerodynamics_landing,

toad.models.performances.mission.mission_definition.nisstoaduilolde) s . aerodynamics . aerodynamics_low_speed,

models.aerodynamics.aerodynamics_takeoff,

models.aerodynamics.components,

toad.models.performances.mission.mission_definition.sthemadd .models . aerodynamics. components. cdo,

toad.openmdao.variables.VariableList fastoad.
method), 204 fastoad.
min() (fastoad.constants.RangeCategory method), 208 fastoad.
Mission (class in fas- fastoad.
toad.models.performances.mission.openmdao.mission), 95
129 fastoad.
MissionBuilder (class in fas- 95
126 97
MissionComponent (class in fas- fastoad.
toad.models.performances.mission.openmdao.mission), 98
129 fastoad.
MissionDefinition (class in fas- 94
128 82
MissionViewer (class in fastoad.gui.mission_viewer), fastoad.
59 83
MissionWrapper (class in fas- fastoad.
toad.models.performances.mission.openmdao.mission_wrapper),
130 fastoad.
ModelDomain (class in fas- 84
toad.module_management.constants), 193 fastoad.
module 85
fastoad, 209 fastoad.
fastoad.api, 207 86
fastoad.cmd, 57 fastoad.
fastoad.cmd.api, 54 86
fastoad.cmd.exceptions, 57 fastoad.
fastoad.cmd. fast, 57 87
fastoad.constants, 207 fastoad.
fastoad.exceptions, 208 88
fastoad.gui, 62 fastoad.
fastoad.gui.analysis_and_plots, 57 88
fastoad.gui.exceptions, 59 fastoad.
fastoad.gui.mission_viewer, 59 89
fastoad.gui.optimization_viewer, 60 fastoad.
fastoad.gui.variable_viewer, 61 90
fastoad.io, 72 fastoad.

models.aerodynamics.components.cd®_fuselage
models.aerodynamics.components.cd®_ht,
models.aerodynamics.components.cd®_nacelles_py
models.aerodynamics.components.cd®_total,
models.aerodynamics.components.cd®_vt,
models.aerodynamics.components.cd®_wing,
models.aerodynamics.components.cd_compressibil
models.aerodynamics.components.cd_trim,
models.aerodynamics.components.compute_low_spe
models.aerodynamics.components.compute_max_cl_
models.aerodynamics.components.compute_polar,

models.aerodynamics.components.compute_reynold

Index

233

FAST-OAD, Release unknown

91

fastoad.

91

fastoad.

92

fastoad.

93

fastoad.

82

fastoad.

80

fastoad.

82

fastoad.
fastoad.
fastoad.

95

fastoad.

94

fastoad.

94

fastoad.
fastoad.
fastoad.

120

fastoad.
fastoad.

118

fastoad.

117

fastoad.

101

fastoad.

99

fastoad.

99

fastoad.

104

fastoad.

104

fastoad.

101

fastoad.

102

fastoad.

102

fastoad.

103

fastoad.

104

fastoad.

105

fastoad.

104

models.

models.

models

models.

models.

models.

models.
models.

models

models.
models.
models.

models.
models.

models

models.

models

models.

models.

models.

models.

models

models.

models.

models.

models

models.

models.

.geometry.
models.

.geometry.

.geometry.

.geometry.

constants, 193
geometry, 121
geometry.compute_aero_center,

constants, 120
geometry.geom_components,
geometry.
geom_components.

geometry.geom_components.

geometry.geom_components.

geometry.geom_components.ht,

geometry.geom_components.ht.

geom_components.ht.

geometry.geom_components.ht.

geometry.geom_components.ht.

geometry.geom_components.ht.

geom_components.ht

geometry.

geometry.

fastoad.models

fastoad.models
109

fastoad.models.

110

fastoad.models.

111

fastoad.models.

111

geom_components . compu tfa sredaddnadebs .

112

fuselafmstoad.models.

113

113

114

fastoad.models.geometry.geom_components

115

115

116

117

.geometry.

.geometry.

.geometry.

.geometry.

.geometry.

.geometry.

geometry.

geometry.

geometry.

geometry.

aerodynamics.components.high_1lift_aléio,
fastoad.models
aerodynamics.components.initialize_|¢,
fastoad.models
.aerodynamics.components.oswald, 105
fastoad.models
aerodynamics.components.utils, 106
fastoad.models
aerodynamics.components.utils.cd®_lliffting_surface,
fastoad.models
aerodynamics.components.utils. frictibh_drag,
fastoad.models.
aerodynamics.constants, 98 108
aerodynamics.external, 95 fastoad.models.
.aerodynamics.external.xfoil, 109
fastoad.models.
aerodynamics.external.xfoil.xfo0il699,7
fastoad.models.
aerodynamics.external.xfoil.xfoil_pldTar,

.geometry.

geometry.

geometry.

geometry.

geometry.

geometry.

fusel affes tompuned ehb egeonferseyt ageom_components

fusel afes toagheddlis e egee try . geom_components

compastered, models . geometry.geom_components
compastentd..modpls og ddmetoyr dgeom_components
compasrered..modepls agddmeiryplgham_components

geom_components

geom_components

geom_components

geom_components

geom_components

geom_components.

geom_components

geom_components

geom_components

geom_components

geom_components

geom_components

geom_components

geom_components

geom_components

geom_components

compasrerdd..mohplst ag ddmataxy . geometry, 121

fastoad.models.geometry.profiles, 120

118

119

geom_components.nacellfapydadsnodels.handling_qualities, 124

.Vt
.vt.
.Vt.

.Vt.

.Vt.

.Vt

.wing.
.wing.
.wing.
.wing.
.wing.
.wing.
.wing.
.wing.
.wing.
.wing.
.wing.
.wing.

.wing.

.V,

.components,
components.
components.
components.
vt.components.

components.

.compute_ver

.wing,

component

component

component

component

component

component

component

component

component

component

component

component

compute_wn

compastendd.. modpls agddmesueeprofiles.profile,

. compateodhdmodatslgdaidtry . profiles.profile_getter,

fastoad.models.handling _qualities.compute_static_margi

geom_components.nacelle_pyll¥ns.compute_nacelle_pylons,

fastoad.models.handling_qualities.tail_sizing,

234

Index

FAST-OAD, Release unknown

123 fastoad.models.performances.mission.util,
fastoad.models.handling_qualities.tail_sizing.compiftie_ht_area
121 fastoad.models.propulsion, 158
fastoad.models.handling_qualities.tail_sizing.fospode, medd]lsrmeecspulsion. fuel _propulsion,
122 158
fastoad.models.handling_qualities.tail_sizing.fampoae. madekeapropulsion. fuel propulsion.rubber_engin
123 158
fastoad.models.loops, 125 fastoad.models.propulsion. fuel_propulsion.rubber_engir
fastoad.models.loops.compute_wing_area, 152
124 fastoad.models.propulsion. fuel_propulsion.rubber_engin
fastoad.models.loops.compute_wing_position, 152
125 fastoad.models.propulsion. fuel_propulsion.rubber_engir
fastoad.models.performances, 152 152
fastoad.models.performances.mission, 152 fastoad.models.propulsion. fuel_propulsion.rubber_engir
fastoad.models.performances.mission.base, 154
148 fastoad.models.weight, 193
fastoad.models.performances.mission.exceptionsfastoad.models.weight.cg, 170
149 fastoad.models.weight.cg.cg, 169
fastoad.models.performances.mission.mission_deffdsticgdadmodels.weight.cg.cg_components,
128 169
fastoad.models.performances.mission.mission_defdsticddmedekptiaight . cg.cg_components.compute_cg_cont
126 161
fastoad.models.performances.mission.mission_deffdstidgddmadeks ome bglid deg, cg_components. compute_cg_othe
126 162
fastoad.models.performances.mission.mission_deffdstidddmaeddbmayeight.cg.cg_components.compute_cg_rati
128 163
fastoad.models.performances.mission.openmdao, fastoad.models.weight.cg.cg_components.compute_cg_tank
131 164
fastoad.models.performances.mission.openmdao. lfimktoedunodels.weight.cg.cg_components.compute_cg_wing
128 165
fastoad.models.performances.mission.openmdao.mizsti@md.models.weight.cg.cg_components.compute_global_
129 166
fastoad.models.performances.mission.openmdao . mizstiond wrepeks, weight.cg.cg_components.compute_ht_cg,
130 166
fastoad.models.performances.mission.polar, fastoad.models.weight.cg.cg_components.compute_max_cg_
149 167
fastoad.models.performances.mission.routes, fastoad.models.weight.cg.cg_components.compute_vt_cg,
150 167
fastoad.models.performances.mission.segments, fastoad.models.weight.cg.cg_components.load_cases,
148 161
fastoad.models.performances.mission.segments . aflad ttomid, mhdebe, weight . cg.cg_components.load_cases.comg
131 158
fastoad.models.performances.mission.segments.bfsetoad.models.weight.cg.cg_components.load_cases.comg
134 159
fastoad.models.performances.mission.segments. cfastsead.models.weight.cg.cg_components.load_cases.comg
138 159
fastoad.models.performances.mission.segments.hfdsltoad.models.weight.cg.cg_components.load_cases.comg
143 159
fastoad.models.performances.mission.segments. spesthathangdels.weight.cg.cg_components.load_cases.comy
144 160
fastoad.models.performances.mission.segments. tbxditoad.models.weight.cg.cg_components.load_cases.comg
145 160
fastoad.models.performances.mission.segments. tfaswsdad ampdels.weight.cg.cg_components.update_mlg,
146 168
Index 235

FAST-OAD, Release unknown

fastoad.
fastoad.
fastoad.
fastoad.
176
fastoad.
170
fastoad.
171
fastoad.
172
fastoad.
172
fastoad.
173
fastoad.
174
fastoad.
174
fastoad.
175
fastoad.
175
fastoad.
179
fastoad.
176
fastoad.
177
fastoad.
177
fastoad.
178
fastoad.
178
fastoad.
184
fastoad.
179
fastoad.
180
fastoad.
181
fastoad.
181
fastoad.
182
fastoad.
183
fastoad.
183
fastoad.
183
fastoad.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

models.

weight.
weight.
.mass_breakdown,
.mass_breakdown.

weight
weight

weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight
weight

weight

cg.constants, 170 189

constants, 192

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

.mass_breakdown.

fastoad.models.weight.mass_breakdown.
192 189
a_airframPastoad.models.weight.mass_breakdown.
188
a_airframeastoad ngodelighteight .mass_breakdown.
184
a_airframba sRodd seddebs wed piitt . mass_breakdown.
184
a_airframtasBoathpeodebe, meight, mass_breakdown.
185

a_airframeasdodd ighde rontebdh waiahs, breakdown.
185

a_airframeasoddnudide] §eeaigiet ghass_breakdown.
186
a_airframeastoay linode b dighight .mass_breakdown.
187
a_airframeasopdimidelkd gheight .mass_breakdown.
187
a_airframfpasomsdamidels.weight.mass_breakdown.
189
a_airframfasumad.models.weight.mass_breakdown.
188
b_propul sfimsitoad.models.weight.mass_breakdown.
190
b_propul sfiasit bedd eamgd ebs wed byttt . mass_breakdown.
191
b_propul sfiasit b2d fmede 14 nesi gleti ghetss_breakdown.
191
b_propul sfizst d3d ummbeksimadil g@ist wed Diitt, 192
fastoad.module_management, 199
b_propul sfimst aad sta@ditke_management . constants, |
fastoad.module_management.exceptions,

cs25,

d_furniture,

d_furniture.

d_furniture

d_furniture

d_furniture

d_furniture

d_furniture

d_furniture.

e_crew,

e_crew.crew_

const

.dl_ca
.d2_pa
.d3_fc
.d4_se

.d5_tc

sum,

weigh

mass_breakdown,

payload,

update_mlw_and_mz

93
194

b_propul sfimsit ach, modul e_management . service_registry,

195
c_systemsfastoad.openmdao, 207
fastoad.openmdao.problem, 199

c_systemsfadt ok eap aysdaemsyakiiditty _checker, 200
fastoad.openmdao.variables, 202

c_systemsfa2t ddd cosemmpdad dystemst wiight,

c_sysh¢ms.c3_navigation_systems_weight,

nacelle_diametgr(}) (fas-
c_systems. c4_SEARSIIIS HRVSHIBNSLANS _WOBIMTon. rubber_engine.rubber_e)

method), 157

C_SYSHEMS - C5_LiFedo AP AFAA OBASe FYHE RN ELGAEPOINt

attribute), 76

C_SYSKEMS (feRckhlMdteKiSeEA M ces. mission.segments.base. FlightSegment

attribute), 136

C_SYSKREME - CAREI@NbSenmdao.variables. Variable attribute),

203

C_SYskgmss By, (fastoad.openmdao.variables.VariableList

method), 204
constants,

236

Index

FAST-OAD, Release unknown

NavigationSystemsWeight (class in fas- P
toad.models.weight.mass_breakdown.c_systems. cw{wg{(gh{vystems_we{g[ggs in fas-
181 toad.models.weight.mass_breakdown.a_airframe.a7_paint_weigh
NoSetupError, 208 174
PassengerSeatslieight (class in fas-

O

OK (fastoad.openmdao.validity_checker. ValidityStatus at-
tribute), 201

OMRubberEngineComponent (class in

fas-

toad.models.weight.mass_breakdown.d_furniture.d2_passenger_s
185

path_separator (fas-
toad.io.xml.variable_io_standard.VariableXmlStandardFormatter

toad.models.propulsion.fuel_propulsion.rubber_engine.opeiyreigeny), 69

153

OMRubberEngineWrapper (class in

fas-

PERFORMANCE (fastoad.module_management.constants.ModelDomain
attribute), 193

toad.models.propulsion.fuel_propulsion.rubber_emgiigopdagsdadastoad.models.performances.mission.polar),

152

OperatingWeightEmpty (class in

fas-

toad.models.weight.mass_breakdown.mass_breakdown),

190

OPTIMAL_ALTITUDE (fas-

149
polar (fastoad.models.performances.mission.segments.base.FlightSegment
attribute), 135
polar (fastoad.models.performances.mission.segments.cruise. CruiseSegme
attribute), 139

toad.models.performances.mission.segments.altitusls] skqfigaldimderelqpagdegunets. mission.segments.cruise. Optimal Crui

attribute), 133

attribute), 140

optimal_cl (fastoad.models.performances.mission.polar. Pelsivar (fastoad.models.performances.mission.segments.hold.HoldSegment

property), 150
optimal_cruise

(fas-

attribute), 143
polar (fastoad.models.performances.mission.segments.speed_change.Spee

toad.models.performances.mission.segments.base.SegmentDgfir1ttigey, 145

attribute), 134

OPTIMAL_FLIGHT_LEVEL (fas-

polar (fastoad.models.performances.mission.segments.taxi. TaxiSegment
attribute), 145

toad.models.performances.mission.segments.altitusts] skdfigstsdldimdereliqpaggdeginets.mission.segments.transition. DummyT

attribute), 133

OptimalCruiseSegment (class in

fas-

toad.models.performances.mission.segments.cruise),

139

optimization_viewer() (in module fastoad.cmd.api),
56

OptimizationViewer (class in fas-

toad.gui.optimization_viewer), 60
optimize_problem() (in module fastoad.cmd.api), 56
original_exception (fas-

attribute), 148

PolarType (class in fas-
toad.models.aerodynamics.constants), 98

PowerSystemsWeight (class in fas-
toad.models.weight.mass_breakdown.c_systems.cl_power_systen

179

pressure (fastoad.model_base.atmosphere. Atmosphere
property), 73

problem_configuration (fas-
toad. gui.optimization_viewer. OptimizationViewer

toad.io.configuration.exceptions. FASTConfigurationBaseKeyilwibding Egvor

attribute), 65

OswaldCoefficient (class in

fas-

Profile (class in

toad.models.geometry.profiles.profile), 118

fas-

toad.models.aerodynamics.components.oswald), propulsion (fastoad.models.performances.mission.mission_definition.mis:

93

property), 126

OTHER (fastoad.module_management.constants.ModelDomagropul sion (fastoad.models.performances.mission.segments.base. FlightSe

attribute), 193

output_file_path (fas-

attribute), 135
propulsion (fastoad.models.performances.mission.segments.cruise. Cruise

toad.io.configuration.configuration. FASTOADProblemConfiguriiate), 139

property), 62

output_file_path (fas-
toad.openmdao.problem. FASTOADProblem
attribute), 200

propulsion (fastoad.models.performances.mission.segments.cruise. Optim
attribute), 140

propulsion (fastoad.models.performances.mission.segments.hold. HoldSe
attribute), 143

output_name (fastoad.models.weight.cg.cg_components.logd-oisss i ot uidoae dasHiag.ysefosmbiorepmicssiohordimsas. speed_chang

property), 160

attribute), 144
propulsion (fastoad.models.performances.mission.segments.transition. Du
attribute), 148

Index

237

FAST-OAD, Release unknown

PROPULSION (fastoad.module_management.constants.Modetlddeménce_area

attribute), 193

(fas-

toad.models.performances.mission.segments.transition. DummyTr.

PropulsionWeight (class in fas- attribute), 148
toad.models.weight.mass_breakdown.b_propulsioRegirgterOpenMDAOSystem (class in fas-
178 toad.module_management.service_registry),

PylonsWeight (class in fas- 197
toad.models.weight.mass_breakdown.a_airframe.BegidterBraghl)sion (class in fas-
174 toad.module_management.service_registry),

197

R RegisterService (class in fas-

RangeCategory (class in fastoad.constants), 207 toad.module_management.service_registry),

RangedRoute (class in fas- 195
toad.models.performances.mission.routes), RegisterSpecializedService (class in fas-
150 toad.module_management.service_registry),

read() (fastoad.io.variable_io.VariablelO method), 71

read_translation_table() (fas-
toad.io.xml.translator.VarXpathTranslator
method), 67

read_variable_descriptions() (fas-
toad.openmdao.variables.Variable class
method), 203

read_variables() (fas-
toad.io.formatter.IVariablelOFormatter
method), 70

read_variables() (fas-

toad.io.xml.variable_io_base.VariableXmlBaseFormatter

method), 68
read_variables()

(fas-

toad.io.xml.variable_io_standard.VariableXmlStaRillphokFckngiitee

method), 69
reference_area

(fas-

196

RegisterSubmodel (class in fas-
toad.module_management.service_registry),
198

RegulatedThrustSegment (class in fas-

toad.models.performances.mission.segments.base),
137

remove_field() (fas-
toad.model_base.flight_point.FlightPoint
class method), 76

reserve_mass_ratio (fas-

toad.models.performances.mission.segments.transition. DummyTr
attribute), 148

ROOT_TAG (in module fastoad.io.xml.constants), 66

(class in fas-
toad.models.propulsion.fuel_propulsion.rubber_engine.rubber_ei
154

toad.models.performances.mission.mission_definitton@isfistoddiildet.fotis dsviBuiktbod), 57

property), 127
reference_area

(fas-

run_driver () (fastoad.openmdao.problem. FASTOADProblem
method), 200

toad.models.performances.mission.segments.base FlfgmSdehedfastoad.openmdao.problem. FASTOAD Problem

attribute), 135
reference_area

(fas-

method), 200

toad.models.performances.mission.segments. cruistS.BreguetC ruiseSegment

attribute), 143
reference_area

(fas-

save () (fastoad.gui.optimization_viewer.OptimizationViewer
method), 60

toad.models.performances.mission.segments.cruisggiaiyeSegmgistoad. gui.variable_viewer. VariableViewer

attribute), 139
reference_area

(fas-

method), 61
save () (fastoad.io.configuration.configuration. FASTOADProblemConfigur

toad.models.performances.mission.segments.cruise. Optimalfgerisede gpent

attribute), 141
reference_area

(fas-

save() (fastoad.io.variable_io.DataFile method), 71
scalarize() (fastoad.model_base.flight_point. FlightPoint

toad.models.performances.mission.segments.hold. HoldSegmauthod), 76

attribute), 143
reference_area

(fas-

SecurityKitWeight (class in fas-
toad.models.weight.mass_breakdown.d_furniture.d4_security_kit

toad.models.performances.mission.segments.speed_change.SgeedChangeSegment

attribute), 145
reference_area

(fas-

SegmentDefinitions (class in fas-
toad.models.performances.mission.segments.base),

toad.models.performances.mission.segments.taxi. TaxiSegmenz4

attribute), 145

238

Index

FAST-OAD, Release unknown

service_id (fastoad.module_management.service_registry.Register OpethbDADSystem

attribute), 198 setup O (fastoad.models.aerodynamics.components.compute_reynolds.Cor

service_id (fastoad.module_management.service_registry.Register Bnethuisinm |
attribute), 197 setup O (fastoad.models.aerodynamics.components.high_lift aero.Compu

service_id (fastoad. module_management.service_registry.RegisterSpetholljedService
attribute), 197 setup O (fastoad.models.aerodynamics.components.initialize_cl.Initialize(

set() (fastoad.io.xml.translator.VarXpathTranslator method), 92
method), 67 setup Q) (fastoad.models.aerodynamics.components.oswald.InducedDragC

set_optimization_definition() (fas- method), 93
toad.io.configuration.configuration. FASTOAD ProBm@ &) figmstamimd. models.aerodynamics.components.oswald. OswaldCoeffic
method), 63 method), 93

set_points() (fastoad.models.geometry.profiles.profile. Pragheup O (fastoad.models.aerodynamics.external.xfoil xfoil_polar.XfoilPola
method), 118 method), 94

setup O (fastoad.io.configuration.configuration. FASTOADMethap () (fastoad.models.geometry.compute_aero_center.ComputeAeroCen
method), 64 method), 120

setup O (fastoad.model_base.propulsion. Base OMPropulsigeCompdhfastoad. models. geometry.geom_components.compute_wetted_are
method), 78 method), 117

setup O (fastoad.model_base.propulsion.IOMPropulsionWeenpar() (fastoad.models.geometry.geom_components.fuselage.compute_cn
method), 78 method), 99

setup O (fastoad.models.aerodynamics.aerodynamics_highs epeqd A éfostoudmiosldiglgSpuadiry. geom_components.fuselage.compute_fu
method), 95 method), 99

setup O (fastoad.models.aerodynamics.aerodynamics_landéetAp (Qdyastoddstaodéis ggeometry. geom_components.fuselage.compute_fu
method), 96 method), 100

setup O (fastoad.models.aerodynamics.aerodynamics_landéet Gppitasidadlantdels. geometry.geom_components.ht.components.comp
method), 97 method), 101

setup O (fastoad.models.aerodynamics.aerodynamics_landéet 6ppifasddadhiesieldgeometry. geom_components.ht.components.comp
method), 96 method), 102

setup O (fastoad.models.aerodynamics.aerodynamics_low_spreap. Qe (fadyaadiicolols Seeedetry. geom_components.ht.components.comp
method), 97 method), 102

setup O (fastoad.models.aerodynamics.aerodynamics_takes Ay oY fustaadloocteffs. geometry. geom_components.ht.components.comp
method), 98 method), 103

setup O (fastoad.models.aerodynamics.components.cd0.CI¥@tup () (fastoad.models.geometry.geom_components.ht.compute_horizont
method), 82 method), 104

setup O (fastoad.models.aerodynamics.components.cd0_fusdge Qd(flistsdldgnodels. geometry.geom_components.nacelle_pylons.comy
method), 83 method), 104

setup O (fastoad.models.aerodynamics.components.cd0_htSed@f§diffastolddiihodels. geometry.geom_components.vt.components.comp
method), 84 method), 105

setup O (fastoad.models.aerodynamics.components.cd0_naxetiap OyfassdadONodelsesdodBlybogsom_components.vt.components.comp
method), 84 method), 106

setup O (fastoad.models.aerodynamics.components.cd0_tosd:&glotfdstoad. models. geometry.geom_components.vt.components.comp
method), 85 method), 107

setup O (fastoad.models.aerodynamics.components.cd0_vtSedp@ditalFioild. models. geometry.geom_components.vt.components.comp
method), 86 method), 107

setup O (fastoad.models.aerodynamics.components.cd0_wmetQdQWifigtoad. models. geometry.geom_components.vt.components.comp
method), 86 method), 108

setup O (fastoad.models.aerodynamics.components.cd_congereapiO)l(fp.Stolichmpdessipebitnetry. geom_components.vt.compute_vertical_
method), 87 method), 109

setup O (fastoad.models.aerodynamics.components.cd_trins€xdipih (fastoad.models.geometry.geom_components.wing.components.co
method), 88 method), 110

setup O (fastoad.models.aerodynamics.components.computze tap (Ypdadtamat oo dalpgtaineody geomic doonplprads. wing.components.co
method), 89 method), 110

setup O (fastoad.models.aerodynamics.components.computee tp x [fdaratid grodeipigeddrerCligandingomponents.wing.components.co
method), 89 method), 111

setup O (fastoad.models.aerodynamics.components.computee pap)(fastodd Podabels. geometry. geom_components.wing.components.co

Index 239

FAST-OAD, Release unknown

method), 111 setup O (fastoad.models.weight.cg.cg_components.compute_cg_ratio_aft.
setup O (fastoad.models.geometry.geom_components.wing.componentetiomdpui&ynac_wing. Compute MACWing

method), 112 setup Q) (fastoad.models.weight.cg.cg_components.compute_cg_tanks.Con
setup Q) (fastoad.models.geometry.geom_components.wing.componentetionputérmfw. Compute MFW

method), 113 setup () (fastoad.models.weight.cg.cg_components.compute_cg_wing.Comn
setup O (fastoad.models.geometry.geom_components.wing.componentetiodpuicdsweep_wing. ComputeSweepWing

method), 113 setup Q) (fastoad.models.weight.cg.cg_components.compute_global_cg.Co
setup O (fastoad.models.geometry.geom_components.wing.componentetiompui&oc_wing. ComputeToCWing

method), 114 setup O (fastoad.models.weight.cg.cg_components.compute_ht_cg.Compu
setup () (fastoad.models.geometry.geom_components.wing.componentetlopui&ovet_area_wing. Compute WetAreaWing

method), 115 setup O (fastoad.models.weight.cg.cg_components.compute_max_cg_ratic
setup O (fastoad.models.geometry.geom_components.wing.componentetiodpui&d’k_wing. ComputeXWing

method), 115 setup Q) (fastoad.models.weight.cg.cg_components.compute_vt_cg.Compu
setup O (fastoad.models.geometry.geom_components.wing.componentetiompui&)’y_wing. ComputeYWing

method), 116 setup) (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup () (fastoad.models.geometry.geom_components.wing.compute_métigodopipete Wing Geometry

method), 117 setup O (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup() (fastoad.models.geometry.geometry.Geometry method), 159

method), 121 setup Q) (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup Q) (fastoad.models.handling_qualities.compute_static_margin. GuthmdgStaticMargin

method), 123 setup O (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup O (fastoad.models.handling _qualities.tail_sizing.compute_ht_anedhodwpte HTArea

method), 122 setup Q) (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup O (fastoad.models.handling_qualities.tail_sizing.compute_tail medasdypmiputeTailAreas

method), 122 setup Q) (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup Q) (fastoad.models.handling_qualities.tail_sizing.compute_vt_anathodmpiiteV TArea

method), 123 setup O (fastoad.models.weight.cg.cg_components.load_cases.compute_c;
setup O (fastoad.models.loops.compute_wing_area. ComputeWingAreaethod), 161

method), 124 setup Q) (fastoad.models.weight.cg.cg_components.update_mlg. Update ML
setup O (fastoad.models.loops.compute_wing_position. Compute Wingibetioidy; 168

method), 125 setup Q) (fastoad.models.weight.mass_breakdown.a_airframe.al_wing_we
setup () (fastoad.models.performances.mission.openmdao.link_mtowrGathpdiye MDOW

method), 129 setup O (fastoad.models.weight.mass_breakdown.a_airframe.a2_fuselage.
setup O (fastoad.models.performances.mission.openmdao.mission. Misgihnd), 171

method), 129 setup Q) (fastoad.models.weight.mass_breakdown.a_airframe.a3_empenna
setup Q) (fastoad.models.performances.mission.openmdao.mission. Misgibn@pmipanent

method), 130 setup O (fastoad.models.weight.mass_breakdown.a_airframe.a4_flight co
setup O (fastoad.models.performances.mission.openmdao.mission_wwgphed MissZon Wrapper

method), 130 setup Q) (fastoad.models.weight.mass_breakdown.a_airframe.a5_landing_
setup O (fastoad.models.propulsion.fuel_propulsion.rubber_engine.apethndyplOMRubberEngine Component

method), 154 setup Q) (fastoad.models.weight.mass_breakdown.a_airframe.a6_pylons_y
setup O (fastoad.models.propulsion.fuel_propulsion.rubber_engine.apethodyplOMRubberEngineWrapper

method), 153 setup O (fastoad.models.weight.mass_breakdown.a_airframe.a7_paint_we
setup Q) (fastoad.models.weight.cg.cg.CG method), 169 method), 174
setup O (fastoad.models.weight.cg.cg. ComputeAircraftCG setup () (fastoad.models.weight.mass_breakdown.a_airframe.sum.Airfram

method), 169 method), 175
setup O (fastoad.models.weight.cg.cg_components.computsetupohffaktoudfmed dompigieGansiso Sradhdos<i(b_propulsion.b1_engine

method), 162 method), 176
setup O (fastoad.models.weight.cg.cg_components.computsecuplhdifs Sondgruted@sens@€hit. mass_breakdown.b_propulsion.b2_fuel_lil

method), 162 method), 177
setup O (fastoad.models.weight.cg.cg_components.computsetqup@iéfasftotdziRatels. weight.mass_breakdown.b_propulsion.b3_uncons

method), 164 method), 177
setup O (fastoad.models.weight.cg.cg_components.computsexqup @i éfasfotdmpuelS.eight.mass_breakdown.b_propulsion.sum. Propu

method), 163 method), 178

240 Index

FAST-OAD, Release unknown

setup O (fastoad.models.weight.mass._

method), 179

setup Q) (fastoad.models.weight.mass_

method), 180

setup Q) (fastoad.models.weight.mass_

method), 181

setup O (fastoad.models.weight.mass._

method), 181

setup Q) (fastoad.models.weight.mass_

method), 182

setup Q) (fastoad.models.weight.mass._

method), 183

setup O (fastoad.models.weight.mass._

method), 183

setup O (fastoad.models.weight.mass_

method), 189

setup O (fastoad.models.weight.mass._

method), 184

setup Q) (fastoad.models.weight.mass_

method), 185

setup Q) (fastoad.models.weight.mass_

method), 186

setup O (fastoad.models.weight.mass._

method), 186

setup Q) (fastoad.models.weight.mass_

method), 187

setup) (fastoad.models.weight.mass._

method), 188

setup O (fastoad.models.weight.mass._

method), 188

setup Q) (fastoad.models.weight.mass_

method), 190

setup O (fastoad.models.weight.mass._

method), 190

setup O (fastoad.models.weight.mass_

method), 191

setup Q) (fastoad.models.weight.mass_

method), 191

setup) (fastoad.models.weight.weight. Weight method),

192
setup_partials()

breakdown.c_systems.cl_poweneskstdm$$aveight. PowerSystemsWeight
setup_partials() (fas-
breakdown.c_systems.c2_life_sappganpdgktamsosieightitsfeSuppmrefisstedis Watgittes_pylons.Cd0
method), 84
breakdown.c_systemseBupap@uotipal sfsyems_weight. NavigationSystems Whight
toad.models.aerodynamics.components.cd0_total. CdOTotal
breakdown.c_systems.c4_transméskinhs §ystems_weight. TransmissionSystemsWeight
setup_partials() (fas-
breakdown.c_systems.c5_fixedtaptmoidelslasysttynsumiesgboihjpxad@py caonalSgoersibel shil
method), 86
breakdown.c_systemsetufiiglarkit aleight. FlightKitWeight (fas-
toad.models.aerodynamics.components.cd0_wing.CdOWing
breakdown.c_systems.sum.Systeresd\dig &7
setup_partials()
breakdown.cs25.Loads

(fas-
toad.models.aerodynamics.components.cd_compressibility. CdCoi
method), 87
breakdown.d_furnitusexdip cpagd i@kighration_weight. CargoConfigurat{fmWeight
toad.models.aerodynamics.components.cd_trim.CdTrim
breakdown.d_furniture.d2_passmtger)sé&its_weight. PassengerSeatsWeight
setup_partials() (fas-
breakdown.d_furniture.d3_foothaduteodelsightdibodWicsrdbeigbnents.compute_low_speed_aerc
method), 89
breakdown.d_furnituse:ddp sparritya ki (veight.SecurityKitWeight (fas-
toad.models.aerodynamics.components.compute_max_cl_landing
breakdown.d_furniture.d5_toiletsthoetgittIoilets Weight
setup_partials() (fas-
breakdown.d_furniture.sum. Fuaddureddleiglaerodynamics.components.compute_polar.ComputelF
method), 90
breakdown.e_crew.ceatupeigar Cral3Xoight (fas-
toad.models.aerodynamics.components.compute_reynolds. Compt
breakdown.mass_breakdown. Measidrbylown
setup_partials() (fas-
breakdown.mass_breakdown. QpadatingWeigénbayptymics.components.high_lift_aero.ComputeD
method), 92
breakdown.payload. EetypupRmiead s () (fas-
toad.models.aerodynamics.components.initialize_cl.Initialize CIP
breakdown.update_mlw_and_mufihddpd@ieMLWandMZFW
setup_partials() (fas-
toad.models.aerodynamics.components.oswald.InducedDragCoef
method), 93
setup_partials()

(fas- (fas-

toad.model_base.propulsion. Base OMPropulsionComponentoad.models.aerodynamics.components.oswald. OswaldCoefficien

method), 78
setup_partials()

method), 93
setup_partials()

(fas- (fas-

toad.models.aerodynamics.aerodynamics_landing. Compute 3ddMlantdkls. geometry.compute_aero_center. ComputeAeroCenter

method), 97
setup_partials()

method), 120
setup_partials()

(fas- (fas-

toad.models.aerodynamics.aerodynamics_landing. ComputeMadhReslebideometry. geom_components.compute_wetted_area.C

method), 96
setup_partials()

method), 117
setup_partials()

(fas- (fas-

toad.models.aerodynamics.components.cd0_fuselage. CdOFuseldgnodels.geometry.geom_components.fuselage.compute_cnbet

method), 83
setup_partials()

method), 99
setup_partials()

(faS- (fas-

toad.models.aerodynamics.components.cd0_ht. CdOHorizontelddihodels.geometry.geom_components.fuselage.compute_fuselc

Index

241

FAST-OAD, Release unknown

method), 99
setup_partials()

toad.models.geometry.geom_

method), 100
setup_partials()

toad.models.geometry.geom_

method), 101
setup_partials()

toad.models.geometry.geom_

method), 102
setup_partials()

toad.models.geometry.geom_

method), 102
setup_partials()

toad.models.geometry.geom_

method), 103
setup_partials()

toad.models.geometry.geom_

method), 105
setup_partials()

toad.models.geometry.geom_

method), 105
setup_partials()

toad.models.geometry.geom_

method), 106
setup_partials()

toad.models.geometry.geom_

method), 107
setup_partials()

toad.models.geometry.geom_

method), 107
setup_partials()

toad.models.geometry.geom_

method), 108
setup_partials()

toad.models.geometry.geom_

method), 110
setup_partials()

toad.models.geometry.geom_

method), 110
setup_partials()

toad.models.geometry.geom_

method), 111
setup_partials()

toad.models.geometry.geom_

method), 112
setup_partials()

toad.models.geometry.geom_

method), 112
setup_partials()

toad.models.geometry.geom_

method), 113
setup_partials()

toad.models.geometry.geom_

method), 113
(fas- setup_partials() (fas-
components.fuselage.compute_fosdlagedelsngpatnbiryede gel; comgtonClalyinSicgcomponents.comp:
method), 114
(fas- setup_partials() (fas-
components.ht.components. corpadeniod elsogetsutiompgaohl] Chopdnents.wing.components.comp:
method), 115
(fas- setup_partials() (fas-
components.ht.components.cormpaderiodels. ggphoe Cyrgpone HDGpdpkats. wing.components.compi
method), 115
(fas- setup_partials() (fas-
components.ht.components. corpadeniodehnigcomuaprytgBM AGinponents.wing.components.comp:
method), 116
(fas- setup_partials() (fas-
components.ht.components.corpadeniodeledem@ongurabiileseepmpute_static_margin. Compute,
method), 124
(fas- setup_partials() (fas-
components.nacelle_pylons.conqadenadebileapdling. Goaljries Naite Nizigl Polepuste e hmetron. Con
method), 122
(fas- setup_partials() (fas-
components.vt.components.contpatenvidelohdndlimgpyteTiidhsardl_sizing.compute_vt_area.Com
method), 123
(fas- setup_partials() (fas-
components.vt.components.contpadenidelslplop Ceonguted) Wahglphasition. ComputeWing Position
method), 125
(fas- setup_partials() (fas-
components.vt.components.contpatemaddisperfeiompaseNibistaapenmdao.mission. MissionCo
method), 130
(fas- setup_partials() (fas-
components.vt.components.contpadenidels.pOpmjsiveNflibl AGiopulsion. rubber_engine.openmda
method), 154
(fas- setup_partials() (fas-
components.vt.components.contpatenyidsiseepiCloncgguegVddmpapeAircraft CG
method), 169
(fas- setup_partials() (fas-
components.wing.components.coaghutedblsS0eighnpgteBS5bmponents.compute_cg_control_surfc
method), 162
(fas- setup_partials() (fas-
components.wing.components.coaghutedels alpighCgrggiteCihpdplents.compute_cg_others.Comp
method), 162
(fas- setup_partials() (fas-
components.wing.components.coaghutedéls.ideChmpgted. 1&mpdVeing. compute_cg_ratio_aft. CG.
method), 164
(fas- setup_partials() (fas-
components.wing.components.coagputedélds.ideCihnpgtes 28mpswing. compute_cg_ratio_aft. Cor
method), 163
(fas- setup_partials() (fas-
components.wing.components.coaihutedelsioveighg. € goegp etehpbaissgompute_cg_tanks. Compu
method), 165
(fas- setup_partials() (fas-
components.wing.components.coaghutedelfweighpagedgF ¥bmponents.compute_cg_wing. Compu
method), 165
(fas- setup_partials() (fas-
components.wing.components.coagputedsiseepighingg (CgmeongsomeepVengipute_ht_cg. ComputeH

242

Index

FAST-OAD, Release unknown

method), 166
setup_partials()

method), 181
setup_partials()

(fas- (fas-

toad.models.weight.cg.cg_components.compute_max_cg_ratoad mnpule MaidiGmato_breakdown.c_systems.c4_transmissions

method), 167
setup_partials()

method), 181
setup_partials()

(faS- (fas-

toad.models.weight.cg.cg_components.compute_vt_cg.CompaseNificglels.weight.mass_breakdown.c_systems.c5_fixed_operatic

method), 167
setup_partials()

method), 182
setup_partials()

(fas- (fas-

toad.models.weight.cg.cg_components.load_cases.compute_togdlawttelseybigiet Gmmpulteéilidoad(Casgstems.co_flight_kit_wei

method), 160
setup_partials()

method), 183
setup_partials()

(fClS' (fas-

toad.models.weight.cg.cg_components.load_cases.compute_togdlawtbelses dginGlalsttnvtdadooad €xxzd oads

method), 161
setup_partials()

method), 189
setup_partials()

(fas- (fas-

toad.models.weight.cg.cg_components.update_mlg. UpdateMddidl. models.weight.mass_breakdown.d_furniture.dl_cargo_confi

method), 168
setup_partials()

toad.models.weight.mass_

method), 170
setup_partials()

toad.models.weight.mass_

method), 171
setup_partials()

toad.models.weight.mass_

method), 172
setup_partials()

toad.models.weight.mass_

method), 172
setup_partials()

toad.models.weight.mass_

method), 173
setup_partials()

toad.models.weight.mass_

method), 174

method), 184
(fas- setup_partials() (fas-
breakdown.a_airframe.al_wing_weighn¥elgWeight. mass_breakdown.d_furniture.d2_passenger_s
method), 185
(fas- setup_partials() (fas-
breakdown.a_airframe.a2_fuselagoadeigideFumaligfeWeight breakdown.d_furniture.d3_food_water-
method), 186
(fas- setup_partials() (fas-
breakdown.a_airframe.a3_empentuwgé modight :benglenmags Waighltdown. d_furniture.d4_security_kit
method), 186
(fas- setup_partials() (fas-
breakdown.a_airframe.a4_flight _tomdrolodedighetgligmGsmtvodsWoght.d_furniture.d5_toilets_weig
method), 187
(fas- setup_partials() (fas-
breakdown.a_airframe.a5_landingaéanodelighielghtdingG domdlkdfghwn. e_crew.crew_weight. CrewW
method), 188
(fas- setup_partials() (fas-
breakdown.a_airframe.a6_pylonstouclghodblboweVebighiass_breakdown.payload. Compute Payload
method), 191

setup_partials() (fas- setup_partials() (fas-
toad.models.weight.mass_breakdown.a_airframe.a7_paint_teaighnddétgWeight.mass_breakdown.update_mlw_and_mzfw.Upc
method), 174 method), 191

setup_partials() (fas- sfc (fastoad.model_base.flight_point.FlightPoint at-
toad.models.weight.mass_breakdown.b_propulsion.bl_enginabweaght Engine Weight
method), 176 sfc_at_max_thrust() (fas-

setup_partials() (fas- toad.models.propulsion.fuel_propulsion.rubber_engine.rubber_ei

toad.models.weight.mass_breakdown.b_propulsion.b2_fuel tia#wod)eighi. FuelLinesWeight

method), 177
setup_partials()

toad.models.weight.mass_

method), 177
setup_partials()

toad.models.weight.mass_

method), 179
setup_partials()

toad.models.weight.mass_

method), 180
setup_partials()

toad.models.weight.mass_

sfc_ratio() (fastoad.models.propulsion.fuel_propulsion.rubber_engine.r
(fas- method), 157
breakdown.b_propulsioBHOR T fiostoudieblessawts flurignConsgovgbdesWaigd): 208
SHORT_MEDIUM (fastoad.constants.RangeCategory
(fas- attribute), 208
breakdown.c_systems.c KimpileRovstens_weight PbussrSystemsWaight
toad.models.performances.mission.routes),
(fas- 150
breakdown.c_systems.c X lifpesignwle (fustead. medeht BageStljgharpfoisteibibidleiBhint
attribute), 75
(fas- source_file (fastoad.openmdao.validity_checker.CheckRecord
breakdown.c_systems.c3_navigatipmpestemseight. NavigationSystems Weight

fas-

Index

243

FAST-OAD, Release unknown

speed_of_sound (fas- time (fastoad.model_base.flight_point.FlightPoint
toad.model_base.atmosphere.Atmosphere attribute), 75
property), 73 time_step (fastoad.models.performances.mission.segments.altitude_chang
SpeedChangeSegment (class in fas- attribute), 133
toad.models.performances.mission.segments.speed.imtemungeep (fastoad.models.performances.mission.segments.base. FixedDui
144 attribute), 138
status (fastoad.openmdao.validity_checker.CheckRecord time_step (fastoad.models.performances.mission.segments.base.FlightSe
property), 200 attribute), 135
sweep_angle_25 (fas- time_step (fastoad.models.performances.mission.segments.base.Regulate
toad.models.aerodynamics.components.utils.cdO_lifting_surfutretufeingSilrfaceGeometry
attribute), 81 time_step (fastoad.models.performances.mission.segments.taxi. TaxiSegm
SystemsiWeight (class in fas- attribute), 145
toad.models.weight.mass_breakdown.c_systems.suo),dataframe () (fas-
183 toad.openmdao.variables.VariableList
method), 205
T to_ivc() (fastoad.openmdao.variables.VariableList
TAKEOFF (fastoad.constants.EngineSetting attribute), 207 method), 205
TAKEOFF (fastoad.constants.FlightPhase attribute), 207 ToiletsWeight (class in fas-
TAKEOFF (fastoad.models.aerodynamics.constants.PolarType toad.models.weight.mass_breakdown.d_furniture.d5_toilets_weig
attribute), 98 187
target (fastoad.models.performances.mission.segments.baSOPLBREBE Ghmeond. openmdao.validity_checker. ValidityStatus
attribute), 135 attribute), 201
target (fastoad.models.performances.mission.segments.crui@Q QW e8egmaehopenmdao.validity _checker. ValidityStatus
attribute), 139 attribute), 201
target (fastoad.models.performances.mission.segments.criliZanBmis@OnseSeensieight (class in fas-
attribute), 140 toad.models.weight.mass_breakdown.c_systems.c4_transmissions
target (fastoad.models.performances.mission.segments.hold. HoldSegiknt
attribute), 143 true_airspeed (fastoad.model_base.atmosphere. Atmosphere
target (fastoad.models.performances.mission.segments.speed_changp1SpeddQhdhgeSegment
attribute), 144 true_airspeed (fastoad.model_base.flight_point. FlightPoint
taxi (fastoad.models.performances.mission.segments.base.SegmentDefiiibiviey, 75
attribute), 134 true_airspeed (fastoad.models.performances.mission.segments.taxi. Taxi.
TAXI_IN (fastoad.constants.FlightPhase attribute), 207 attribute), 145
TAXI_OUT (fastoad.constants.FlightPhase attribute), 207
TaxiSegment (class in fas-
toad.models.performances.mission.segments.taxi)UnconsumablesWeight (class in fas-
145 toad.models.weight.mass_breakdown.b_propulsion.b3_unconsum
temperature (fastoad.model_base.atmosphere.Atmosphere 177
property), 72 unitary_reynolds (fas-
thickness_ratio (fas- toad.model_base.atmosphere. Atmosphere
toad.models.aerodynamics.components.utils.cd0_lifting_surprepdrifpygSurfaceGeometry
attribute), 81 units (fastoad.openmdao.variables.Variable property),
thickness_ratio (fas- 203
toad.models.geometry.profiles.profile. Profile UNSPECIFIED (fastoad.module_management.constants.ModelDomain
property), 118 attribute), 193
thrust (fastoad.model_base.flight_point.FlightPoint at- update() (fastoad.openmdao.variables.VariableList
tribute), 75 method), 204
thrust_is_regulated (fas- update_variable_descriptions() (fas-
toad.model_base.flight_point.FlightPoint toad.openmdao.variables.Variable class
attribute), 75 method), 203
thrust_rate (fastoad.model_base.flight_point.FlightPoint UpdateMLG (class in fas-
attribute), 75 toad.models.weight.cg.cg_components.update_mlg),

thrust_rate (fastoad.models.performances.mission.segments.base.M@gualThrustSegment
attribute), 137

244 Index

FAST-OAD, Release unknown

UpdateMLWandMZFw fas-

(class in

170

toad.models.weight.mass_breakdown.update_mlwwaad ef@)ffastoad.io.variable_io.VariablelO method), 71

191
use_max_lift_drag_ratio

(fas-

write_n2() (in module fastoad.cmd.api), 55
write_needed_inputs()

(fas-

toad.models.performances.mission.segments.cruise. Breguet€adsieSegnfeqitration. configuration. FASTOADProblem Configurat

attribute), 143

\Y

val (fastoad.openmdao.variables.Variable property), 203

ValidityDomainChecker (class in fas-
toad.openmdao.validity_checker), 201
ValidityStatus (class in fas-

toad.openmdao.validity_checker), 201

method), 63

write_outputs() (fas-
toad.openmdao.problem. FASTOADProblem
method), 200

write_variables() (fas-
toad.io.formatter.IVariablelOFormatter
method), 70

write_variables() (fas-

value (fastoad.io.configuration.exceptions. FASTConfigurationBase KdgBfildiRBEyssiable_io_base.VariableXmlBaseFormatter

attribute), 65

value (fastoad.openmdao.validity_checker.CheckRecord

property), 200
value (fastoad.openmdao.variables.Variable property),
203

method), 68

write_variables() (fas-
toad.io.xml.variable_io_standard.VariableXmlStandardFormatter
method), 69

write_xdsm() (in module fastoad.cmd.api), 56

value_units (fastoad.openmdao.validity_checker. CheckRe¥ite_xdsm() (in module fastoad.openmdao.whatsopt),

property), 201
Variable (class in fastoad.openmdao.variables), 202

property), 201
variable_names
toad.io.xml.translator.VarXpathTranslator
property), 67
variable_viewer () (in module fastoad.cmd.api), 56
VariableIO (class in fastoad.io.variable_io), 70
VariableLegacylXmlFormatter (class in
toad.io.xml.variable_io_legacy), 68
Variablelist (class in fastoad.openmdao.variables),

(fas-

fas-

204
VariableViewer (class in fastoad.gui.variable_viewer),
61
VariableXmlBaseFormatter (class in fas-
toad.io.xml.variable_io_base), 68
VariableXmlStandardFormatter (class in fas-
toad.io.xml.variable_io_standard), 69
VarXpathTranslator (class in fas-

toad.io.xml.translator), 67
VERY_LONG (fastoad.constants.RangeCategory attribute),
208

W

Weight (class in fastoad.models.weight.weight), 192

206

I\%Ecord

variable_name (fastoad.openmdao.validity_checker.Chec

X (fastoad.models.geometry.profiles.profile. Coordinates2D

property), 118

XfoilPolar (class in fas-
toad.models.aerodynamics.external.xfoil xfoil_polar),
94

xml_io_attribute (fas-

toad.io.xml.variable_io_base.VariableXmlBaseFormatter
attribute), 68

xml_unit_attribute (fas-
toad.io.xml.variable_io_base.VariableXmlBaseFormatter
attribute), 68

XMLReadError, 208

xpaths (fastoad.io.xml.translator.VarXpathTranslator
property), 67

Y

y (fastoad.models.geometry.profiles.profile. Coordinates2D
property), 118

WEIGHT (fastoad.module_management.constants.ModelDomain

attribute), 193

wet_area (fastoad.models.aerodynamics.components.utils.cdO_lifting_surface.LiftingSurfaceGeometry

attribute), 81

wing_geometry_plot() (in module fas-
toad.gui.analysis_and_plots), 57
WingWeight (class in fas-

toad.models.weight.mass_breakdown.a_airframe.al_wing_weight),

Index

245

	Contents
	License
	Contributors
	How to cite us
	Changelog
	Version 1.1.0
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0.0
	Version 0.5.4-beta
	Version 0.5.3-beta
	Version 0.5.2-beta
	Version 0.5.1-beta
	Version 0.5.0-beta
	Version 0.4.2-beta
	Version 0.4.0-beta
	Version 0.3.1-beta
	Version 0.3.0-beta
	Version 0.2.2-beta
	Version 0.2.1-beta
	Version 0.2.0b
	Version 0.1.0a

	General documentation
	Installation procedure
	FAST-OAD overview
	How it works
	Overview of FAST-OAD files
	configuration file (.yml)
	The input and output data files (.xml)

	Usage
	FAST-OAD configuration file
	Custom module path
	Input and output files
	Problem driver
	Solvers
	Problem definition
	Optimization settings
	Design variables
	Objective function
	Constraints

	Using FAST-OAD through Command line
	How to generate a configuration file
	How to get list of registered modules
	How to get list of variables
	How to generate an input file
	How to view the problem process
	N2 diagram
	XDSM

	How to run the problem
	Run Multi-Disciplinary Analysis
	Run Multi-Disciplinary Optimization

	Using FAST-OAD through Python

	Problem variables
	Variable naming
	Serialization

	Mission module
	Mission module
	Mission file
	mission description
	Phase section
	Route section
	Mission section

	Flight segments
	Segment types
	speed_change
	altitude_change
	cruise
	optimal_cruise
	holding
	taxi
	Segment target
	Special segment parameters
	engine_setting
	polar

	Setting values in mission file
	hard-coded value and unit
	hard-coded value with no unit
	OpenMDAO variable
	Contextual OpenMDAO variable
	Example 1 : generic contextual variable in a route
	Example 2 : basic contextual variable in a flight phase

	Mission module
	Inputs and outputs of the module
	Usage in FAST-OAD configuration file
	propulsion_id
	mission_file_path
	out_file
	mission_name
	use_initializer_iteration
	adjust_fuel
	compute_TOW
	add_solver
	is_sizing

	Adding modules to FAST-OAD
	How to add custom OpenMDAO modules to FAST-OAD
	Create your OpenMDAO system
	Variable naming
	Defining options
	Definition of partial derivatives
	About ImplicitComponent classes
	Checking validity domains

	Register your system(s)
	Modify the configuration file

	How to add a custom propulsion model to FAST-OAD
	The FlightPoint class
	Available flight parameters
	Exchanges with pandas DataFrame
	Extensibility

	The IPropulsion interface
	Computation of propulsion data
	Propulsion model inputs
	Propulsion model outputs
	Computation of consumed mass

	The OpenMDAO wrapper
	Defining the wrapper
	Registering the wrapper
	Using the wrapper in the configuration file

	How to document your variables
	Defining variable description in your OpenMDAO component
	Defining variable description in dedicated files

	How to add custom OpenMDAO modules to FAST-OAD as a plugin
	Plugin declaration
	Building
	Publishing

	Submodels in FAST-OAD
	Why submodels ?
	How to use submodels in a custom module ?
	How to declare a custom submodel ?
	How to use submodels from configuration file ?
	Deactivating a submodel

	fastoad
	fastoad package
	Subpackages
	fastoad.cmd package
	Subpackages
	Submodules
	fastoad.cmd.api module
	fastoad.cmd.exceptions module
	fastoad.cmd.fast module
	Module contents

	fastoad.gui package
	Subpackages
	Submodules
	fastoad.gui.analysis_and_plots module
	fastoad.gui.exceptions module
	fastoad.gui.mission_viewer module
	fastoad.gui.optimization_viewer module
	fastoad.gui.variable_viewer module
	Module contents

	fastoad.io package
	Subpackages
	fastoad.io.configuration package
	Subpackages
	Submodules
	fastoad.io.configuration.configuration module
	fastoad.io.configuration.exceptions module
	Module contents
	fastoad.io.xml package
	Subpackages
	Submodules
	fastoad.io.xml.constants module
	fastoad.io.xml.exceptions module
	fastoad.io.xml.translator module
	fastoad.io.xml.variable_io_base module
	fastoad.io.xml.variable_io_legacy module
	fastoad.io.xml.variable_io_standard module
	Module contents
	Submodules
	fastoad.io.formatter module
	fastoad.io.variable_io module
	Module contents

	fastoad.model_base package
	Subpackages
	Submodules
	fastoad.model_base.atmosphere module
	fastoad.model_base.flight_point module
	fastoad.model_base.propulsion module
	Module contents

	fastoad.models package
	Subpackages
	fastoad.models.aerodynamics package
	Subpackages
	fastoad.models.aerodynamics.components package
	Subpackages
	fastoad.models.aerodynamics.components.utils package
	Submodules
	fastoad.models.aerodynamics.components.utils.cd0_lifting_surface module
	fastoad.models.aerodynamics.components.utils.friction_drag module
	Module contents
	Submodules
	fastoad.models.aerodynamics.components.cd0 module
	fastoad.models.aerodynamics.components.cd0_fuselage module
	fastoad.models.aerodynamics.components.cd0_ht module
	fastoad.models.aerodynamics.components.cd0_nacelles_pylons module
	fastoad.models.aerodynamics.components.cd0_total module
	fastoad.models.aerodynamics.components.cd0_vt module
	fastoad.models.aerodynamics.components.cd0_wing module
	fastoad.models.aerodynamics.components.cd_compressibility module
	fastoad.models.aerodynamics.components.cd_trim module
	fastoad.models.aerodynamics.components.compute_low_speed_aero module
	fastoad.models.aerodynamics.components.compute_max_cl_landing module
	fastoad.models.aerodynamics.components.compute_polar module
	fastoad.models.aerodynamics.components.compute_reynolds module
	fastoad.models.aerodynamics.components.high_lift_aero module
	fastoad.models.aerodynamics.components.initialize_cl module
	fastoad.models.aerodynamics.components.oswald module
	Module contents
	fastoad.models.aerodynamics.external package
	Subpackages
	fastoad.models.aerodynamics.external.xfoil package
	Subpackages
	fastoad.models.aerodynamics.external.xfoil.xfoil699 package
	Module contents
	Submodules
	fastoad.models.aerodynamics.external.xfoil.xfoil_polar module
	Module contents
	Module contents
	Submodules
	fastoad.models.aerodynamics.aerodynamics_high_speed module
	fastoad.models.aerodynamics.aerodynamics_landing module
	fastoad.models.aerodynamics.aerodynamics_low_speed module
	fastoad.models.aerodynamics.aerodynamics_takeoff module
	fastoad.models.aerodynamics.constants module
	Module contents
	fastoad.models.geometry package
	Subpackages
	fastoad.models.geometry.geom_components package
	Subpackages
	fastoad.models.geometry.geom_components.fuselage package
	Submodules
	fastoad.models.geometry.geom_components.fuselage.compute_cnbeta_fuselage module
	fastoad.models.geometry.geom_components.fuselage.compute_fuselage module
	Module contents
	fastoad.models.geometry.geom_components.ht package
	Subpackages
	fastoad.models.geometry.geom_components.ht.components package
	Submodules
	fastoad.models.geometry.geom_components.ht.components.compute_ht_chords module
	fastoad.models.geometry.geom_components.ht.components.compute_ht_cl_alpha module
	fastoad.models.geometry.geom_components.ht.components.compute_ht_mac module
	fastoad.models.geometry.geom_components.ht.components.compute_ht_sweep module
	Module contents
	Submodules
	fastoad.models.geometry.geom_components.ht.compute_horizontal_tail module
	Module contents
	fastoad.models.geometry.geom_components.nacelle_pylons package
	Submodules
	fastoad.models.geometry.geom_components.nacelle_pylons.compute_nacelle_pylons module
	Module contents
	fastoad.models.geometry.geom_components.vt package
	Subpackages
	fastoad.models.geometry.geom_components.vt.components package
	Submodules
	fastoad.models.geometry.geom_components.vt.components.compute_vt_chords module
	fastoad.models.geometry.geom_components.vt.components.compute_vt_clalpha module
	fastoad.models.geometry.geom_components.vt.components.compute_vt_distance module
	fastoad.models.geometry.geom_components.vt.components.compute_vt_mac module
	fastoad.models.geometry.geom_components.vt.components.compute_vt_sweep module
	Module contents
	Submodules
	fastoad.models.geometry.geom_components.vt.compute_vertical_tail module
	Module contents
	fastoad.models.geometry.geom_components.wing package
	Subpackages
	fastoad.models.geometry.geom_components.wing.components package
	Submodules
	fastoad.models.geometry.geom_components.wing.components.compute_b_50 module
	fastoad.models.geometry.geom_components.wing.components.compute_cl_alpha module
	fastoad.models.geometry.geom_components.wing.components.compute_l1_l4 module
	fastoad.models.geometry.geom_components.wing.components.compute_l2_l3 module
	fastoad.models.geometry.geom_components.wing.components.compute_mac_wing module
	fastoad.models.geometry.geom_components.wing.components.compute_mfw module
	fastoad.models.geometry.geom_components.wing.components.compute_sweep_wing module
	fastoad.models.geometry.geom_components.wing.components.compute_toc_wing module
	fastoad.models.geometry.geom_components.wing.components.compute_wet_area_wing module
	fastoad.models.geometry.geom_components.wing.components.compute_x_wing module
	fastoad.models.geometry.geom_components.wing.components.compute_y_wing module
	Module contents
	Submodules
	fastoad.models.geometry.geom_components.wing.compute_wing module
	Module contents
	Submodules
	fastoad.models.geometry.geom_components.compute_wetted_area module
	Module contents
	fastoad.models.geometry.profiles package
	Subpackages
	Submodules
	fastoad.models.geometry.profiles.profile module
	fastoad.models.geometry.profiles.profile_getter module
	Module contents
	Submodules
	fastoad.models.geometry.compute_aero_center module
	fastoad.models.geometry.constants module
	fastoad.models.geometry.geometry module
	Module contents
	fastoad.models.handling_qualities package
	Subpackages
	fastoad.models.handling_qualities.tail_sizing package
	Submodules
	fastoad.models.handling_qualities.tail_sizing.compute_ht_area module
	fastoad.models.handling_qualities.tail_sizing.compute_tail_areas module
	fastoad.models.handling_qualities.tail_sizing.compute_vt_area module
	Module contents
	Submodules
	fastoad.models.handling_qualities.compute_static_margin module
	Module contents
	fastoad.models.loops package
	Subpackages
	Submodules
	fastoad.models.loops.compute_wing_area module
	fastoad.models.loops.compute_wing_position module
	Module contents
	fastoad.models.performances package
	Subpackages
	fastoad.models.performances.mission package
	Subpackages
	fastoad.models.performances.mission.mission_definition package
	Subpackages
	Submodules
	fastoad.models.performances.mission.mission_definition.exceptions module
	fastoad.models.performances.mission.mission_definition.mission_builder module
	fastoad.models.performances.mission.mission_definition.schema module
	Module contents
	fastoad.models.performances.mission.openmdao package
	Subpackages
	Submodules
	fastoad.models.performances.mission.openmdao.link_mtow module
	fastoad.models.performances.mission.openmdao.mission module
	fastoad.models.performances.mission.openmdao.mission_wrapper module
	Module contents
	fastoad.models.performances.mission.segments package
	Subpackages
	Submodules
	fastoad.models.performances.mission.segments.altitude_change module
	fastoad.models.performances.mission.segments.base module
	fastoad.models.performances.mission.segments.cruise module
	fastoad.models.performances.mission.segments.hold module
	fastoad.models.performances.mission.segments.speed_change module
	fastoad.models.performances.mission.segments.taxi module
	fastoad.models.performances.mission.segments.transition module
	Module contents
	Submodules
	fastoad.models.performances.mission.base module
	fastoad.models.performances.mission.exceptions module
	fastoad.models.performances.mission.polar module
	fastoad.models.performances.mission.routes module
	fastoad.models.performances.mission.util module
	Module contents
	Module contents
	fastoad.models.propulsion package
	Subpackages
	fastoad.models.propulsion.fuel_propulsion package
	Subpackages
	fastoad.models.propulsion.fuel_propulsion.rubber_engine package
	Subpackages
	Submodules
	fastoad.models.propulsion.fuel_propulsion.rubber_engine.constants module
	fastoad.models.propulsion.fuel_propulsion.rubber_engine.exceptions module
	fastoad.models.propulsion.fuel_propulsion.rubber_engine.openmdao module
	fastoad.models.propulsion.fuel_propulsion.rubber_engine.rubber_engine module
	Module contents
	Module contents
	Module contents
	fastoad.models.weight package
	Subpackages
	fastoad.models.weight.cg package
	Subpackages
	fastoad.models.weight.cg.cg_components package
	Subpackages
	fastoad.models.weight.cg.cg_components.load_cases package
	Submodules
	fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase1 module
	fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase2 module
	fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase3 module
	fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase4 module
	fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcase_base module
	fastoad.models.weight.cg.cg_components.load_cases.compute_cg_loadcases module
	Module contents
	Submodules
	fastoad.models.weight.cg.cg_components.compute_cg_control_surfaces module
	fastoad.models.weight.cg.cg_components.compute_cg_others module
	fastoad.models.weight.cg.cg_components.compute_cg_ratio_aft module
	fastoad.models.weight.cg.cg_components.compute_cg_tanks module
	fastoad.models.weight.cg.cg_components.compute_cg_wing module
	fastoad.models.weight.cg.cg_components.compute_global_cg module
	fastoad.models.weight.cg.cg_components.compute_ht_cg module
	fastoad.models.weight.cg.cg_components.compute_max_cg_ratio module
	fastoad.models.weight.cg.cg_components.compute_vt_cg module
	fastoad.models.weight.cg.cg_components.update_mlg module
	Module contents
	Submodules
	fastoad.models.weight.cg.cg module
	fastoad.models.weight.cg.constants module
	Module contents
	fastoad.models.weight.mass_breakdown package
	Subpackages
	fastoad.models.weight.mass_breakdown.a_airframe package
	Submodules
	fastoad.models.weight.mass_breakdown.a_airframe.a1_wing_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.a2_fuselage_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.a3_empennage_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.a4_flight_control_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.a5_landing_gear_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.a6_pylons_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.a7_paint_weight module
	fastoad.models.weight.mass_breakdown.a_airframe.constants module
	fastoad.models.weight.mass_breakdown.a_airframe.sum module
	Module contents
	fastoad.models.weight.mass_breakdown.b_propulsion package
	Submodules
	fastoad.models.weight.mass_breakdown.b_propulsion.b1_engine_weight module
	fastoad.models.weight.mass_breakdown.b_propulsion.b2_fuel_lines_weight module
	fastoad.models.weight.mass_breakdown.b_propulsion.b3_unconsumables_weight module
	fastoad.models.weight.mass_breakdown.b_propulsion.constants module
	fastoad.models.weight.mass_breakdown.b_propulsion.sum module
	Module contents
	fastoad.models.weight.mass_breakdown.c_systems package
	Submodules
	fastoad.models.weight.mass_breakdown.c_systems.c1_power_systems_weight module
	fastoad.models.weight.mass_breakdown.c_systems.c2_life_support_systems_weight module
	fastoad.models.weight.mass_breakdown.c_systems.c3_navigation_systems_weight module
	fastoad.models.weight.mass_breakdown.c_systems.c4_transmissions_systems_weight module
	fastoad.models.weight.mass_breakdown.c_systems.c5_fixed_operational_systems_weight module
	fastoad.models.weight.mass_breakdown.c_systems.c6_flight_kit_weight module
	fastoad.models.weight.mass_breakdown.c_systems.constants module
	fastoad.models.weight.mass_breakdown.c_systems.sum module
	Module contents
	fastoad.models.weight.mass_breakdown.d_furniture package
	Submodules
	fastoad.models.weight.mass_breakdown.d_furniture.constants module
	fastoad.models.weight.mass_breakdown.d_furniture.d1_cargo_configuration_weight module
	fastoad.models.weight.mass_breakdown.d_furniture.d2_passenger_seats_weight module
	fastoad.models.weight.mass_breakdown.d_furniture.d3_food_water_weight module
	fastoad.models.weight.mass_breakdown.d_furniture.d4_security_kit_weight module
	fastoad.models.weight.mass_breakdown.d_furniture.d5_toilets_weight module
	fastoad.models.weight.mass_breakdown.d_furniture.sum module
	Module contents
	fastoad.models.weight.mass_breakdown.e_crew package
	Submodules
	fastoad.models.weight.mass_breakdown.e_crew.crew_weight module
	Module contents
	Submodules
	fastoad.models.weight.mass_breakdown.constants module
	fastoad.models.weight.mass_breakdown.cs25 module
	fastoad.models.weight.mass_breakdown.mass_breakdown module
	fastoad.models.weight.mass_breakdown.payload module
	fastoad.models.weight.mass_breakdown.update_mlw_and_mzfw module
	Module contents
	Submodules
	fastoad.models.weight.constants module
	fastoad.models.weight.weight module
	Module contents
	Submodules
	fastoad.models.constants module
	Module contents

	fastoad.module_management package
	Subpackages
	Submodules
	fastoad.module_management.constants module
	fastoad.module_management.exceptions module
	fastoad.module_management.service_registry module
	Module contents

	fastoad.openmdao package
	Subpackages
	Submodules
	fastoad.openmdao.problem module
	fastoad.openmdao.validity_checker module
	fastoad.openmdao.variables module
	fastoad.openmdao.whatsopt module
	Module contents

	Submodules
	fastoad.api module
	fastoad.constants module
	fastoad.exceptions module

	Module contents

	Indices and tables
	Bibliography
	Python Module Index
	Index

