
FAST-OAD
Release unknown

unknown

Mar 21, 2024

CONTENTS

1 Contents 3

2 Indices and tables 203

Bibliography 205

Python Module Index 207

Index 209

i

ii

FAST-OAD, Release unknown

For a quick overview of the way FAST-OAD works, please go here.

Installation instructions are here.

For a detailed description of the input files and the Command Line Interface, check out the usage section.

If you prefer to discover the Application Programming Interface with Python notebooks, you may go directly to
the section Using FAST-OAD through Python.

For a description of models used in FAST-OAD, you may see the model documentations.

If you want to add your own models, please check out How to add custom OpenMDAO modules to FAST-OAD.

Note: Since version 1.3, FAST-OAD has its core features in FAST-OAD-core package, while the legacy models are
in FAST-OAD-CS25 package.

Yet, installing FAST-OAD 1.x will keep installing both FAST-OAD-core and FAST-OAD-CS25.

Models in FAST-OAD-CS25 are still a work in progress.

CONTENTS 1

https://pypi.org/project/fast-oad-core/
https://pypi.org/project/fast-oad-cs25/

FAST-OAD, Release unknown

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 License

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all
its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies
of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that
they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run

3

http://fsf.org/

FAST-OAD, Release unknown

modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed
this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains,
we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without
modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright
notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided),
that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents
a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official

4 Chapter 1. Contents

FAST-OAD, Release unknown

standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part
of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used
to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, in-
cluding scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities but which are not
part of the work. For example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between those subprograms and other
parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that

same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair
use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running
those works, provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or modification of the

1.1. License 5

FAST-OAD, Release unknown

work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all
of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in any other way, but it does not invalidate
such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this
License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distri-
bution medium), accompanied by a written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source for all the software in

6 Chapter 1. Contents

FAST-OAD, Release unknown

the product that is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a network server
at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place
at no further charge. You need not require recipients to copy the Corresponding Source along
with the object code. If the place to copy the object code is a network server, the Corresponding
Source may be on a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code saying where to
find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed
or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless
of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of pos-
session and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how
the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to
install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

1.1. License 7

FAST-OAD, Release unknown

in accord with this section must be in a format that is publicly documented (and with an implementation available to
the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place additional permissions on
material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of
this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified ver-
sions of such material be marked in reasonable ways as different from the original version;
or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a
license document contains a further restriction but permits relicensing or conveying under this License, you may add
to a covered work material governed by the terms of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate
your rights under this License (including any patent licenses granted under the third paragraph of section 11).

8 Chapter 1. Contents

FAST-OAD, Release unknown

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-
to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License
grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to
do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are
not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation
of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work
also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the
predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the
Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by
some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims
that would be infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

1.1. License 9

FAST-OAD, Release unknown

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such
an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means, then you must either (1)
cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license
for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the
patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would
infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is automatically extended to all recipients of the covered work and
works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may otherwise be available to you under applicable patent
law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you
could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey the resulting work. The terms of this License will continue
to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

10 Chapter 1. Contents

FAST-OAD, Release unknown

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered version or of any later version
published by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

1.1. License 11

FAST-OAD, Release unknown

1.2 Contributors

• Christophe DAVID <christophe.david@onera.fr>

• Scott DELBECQ <scott.delbecq@isae-supaero.fr>

• Martin DELAVENNE <martin.delavenne@isae-supaero.fr>

1.3 How to cite us

Please cite this article when using FAST-OAD in your research works:

C. David, S. Delbecq, S. Defoort, P. Schmollgruber, E. Benard and V. Pommier-Budinger: “From FAST to FAST-
OAD: An open source framework for rapid Overall Aircraft Design”, IOP Conference Series: Materials Science and
Engineering, vol. 1024, n. 1, DOI: 10.1088/1757-899x/1024/1/012062

@article{David2021,
doi = {10.1088/1757-899x/1024/1/012062},
url = {https://doi.org/10.1088/1757-899x/1024/1/012062},
year = 2021,
month = {jan},
publisher = {{IOP} Publishing},
volume = {1024},
number = {1},
pages = {012062},
author = {Christophe David and Scott Delbecq and Sebastien Defoort and Peter␣

→˓Schmollgruber and Emmanuel Benard and Valerie Pommier-Budinger},
title = {From {FAST} to {FAST}-{OAD}: An open source framework for rapid Overall␣

→˓Aircraft Design},
journal = {{IOP} Conference Series: Materials Science and Engineering}}

1.4 Changelog

1.4.1 Version 1.7.0

• Added:
– Centralized way to set options from configuration file. (#510)

• Fixed:
– Fix for validity domain checker. (#511)

12 Chapter 1. Contents

mailto:christophe.david@onera.fr
mailto:scott.delbecq@isae-supaero.fr
mailto:martin.delavenne@isae-supaero.fr

FAST-OAD, Release unknown

1.4.2 Version 1.6.0

• Added:
– FAST-OAD is now officially compatible with Python 3.10. Support of Python 3.7 has been abandoned.

(#496)

– OpenMDAO group options can now be set from configuration file. (#502)

– Mission computation:
∗ A value for maximum lift coefficient can now be set for climb and cruise segments. (#504)

∗ Added the field consumed_fuel, computed for each time step and present in CSV output file.
(#505)

• Fixed:
– Decreased execution time by avoiding unnecessary setup operations. (#503)

1.4.3 Version 1.5.2

• Added:
– Added sphinx documentation for source data file generation. (#500)

• Fixed:
– Fix for climb segment going far too high when asked for optimal altitude in some cases. (#497 and

#498)

– Now accepting upper case distribution names for FAST-OAD plugins. (#499)

– Now DataFile.from_problem() returns a DataFile instance, and not a VariableList instance. (#494)

1.4.4 Version 1.5.1

• Fixed:
– Some warning were issued by pandas when using mission module. (#492)

1.4.5 Version 1.5.0

• Added:
– Computation of payload-range data. (#471 and #482)

– Payload-range plot. (#480)

– Time-step simulation of takeoff in mission module (#481, #484, #487, #490)

– Introduced concept of macro-segment, for proposing assembly of several segments as one usable seg-
ment. (#488)

– Segment implementations can now be registered using decorators. (#485)

– Mission definition can now define a global target fuel consumption. (#467)

– A FAST-OAD plugin can now come with its own source data files, obtainable using fastoad
gen_source_data_file command. (#477)

• Changed:

1.4. Changelog 13

FAST-OAD, Release unknown

– fast-oad (not fast-oad-core) now requires at least fast-oad-cs25 0.1.4. (#475)

– fast-oad (and fast-oad-core) now requires at least OpenMDAO 3.18. (#483)

– Variable viewer can now display discrete outputs of type string. (#479)

• Fixed:
– MissionViewer was not able to show several missions. (#477)

– Fixed compatibility with OpenMDAO 3.26 (#486)

1.4.6 Version 1.4.2

• Fixed:
– Fixed compatibility with Openmdao 3.22. (#464)

– Now a warning is issued when a nan value is in generated input file from a given data source. (#468)

– Now FAST-OAD_CS25 0.1.4 is explicitly required. (#475)

1.4.7 Version 1.4.1

• Fixed:
– Fixed backward compatibility of bundled missions. (#466)

1.4.8 Version 1.4.0

• Changed:
– Added a new series of tutorials. (#426)

– Enhancements in mission module (#430 and #462), mainly:
∗ a parameter with a variable as value can now be associated to a unit and a default value that will

be used in the OpenMDAO input declaration (and be in generated input data file).

∗ a target parameter can be declared as relative to the start point of the segment by prefixing
the parameter name with “delta_” when setting a parameter, a minus sign can be put before a
variable name to get the opposite value (can be useful with relative values)

∗ a parameter can now be set at route or mission level.

∗ dISA can now be set in mission definition file with isa_offset.

∗ a mission phase can now contain other phases.

∗ if a segment parameter (dataclass field) is an array or a list, the associated variable in mission
file will be declared with shape_by_conn=True.

∗ taxi-out and takeoff are no more automatically set outside of the mission definition file:
· mission starting point (altitude, speed, mass) can now be set using the “start” segment.

· the mass input of the mission can be set using the “mass_input” segment. This segment
can be anywhere in the mission, though it is expected that fuel consumption in previous
segments is mass-independent.

14 Chapter 1. Contents

FAST-OAD, Release unknown

· if none of the two above solution is used to define a mass input variable, the mission module
falls back to behaviour of earlier releases, i.e. the automatic addition of taxi-out and takeoff
at beginning of the mission.

– Upgrade to wop 2.x API. (#453)

• Fixed:
– Variable viewer was showing only one variable at a time if variable names contained no colon. (#456)

– Optimization viewer was handling incorrectly bounds with value 0. (#461)

1.4.9 Version 1.3.5

• Fixed:
– Deactivated automatic reports from OpenMDAO 3.17+ (can still be driven by environment variable

OPENMDAO_REPORTS). (#449)

– Mass breakdown bar plot now accepts more than 5 datasets. The used color map is now consistent
with othe FAST-OAD plots. (#451)

1.4.10 Version 1.3.4

• Fixed:
– FAST-OAD was quickly crashing in multiprocessing environment. (#442)

– Memory consumption could increase considerably when numerous computations were done in the
same Python session. (#443)

– Deactivated sub-models kept being deactivated in following computations done in the same Python
session. (#444)

1.4.11 Version 1.3.3

• Fixed:
– Fixed crash when using Newton solver or case recorders. (#434)

– DataFile class enhancement (#435) :
∗ Instantiating DataFile with an non-existent file now triggers an error.

∗ DataClass.from_*() methods now return a DataClass instance instead of VariableList.

∗ A dedicated section has been added in Sphinx documentation (General Documentation >
Process variables > Serialization > FAST-OAD API).

– A component input could be in FAST-OAD-generated input file though it was explicitly connected
to an IndepVarComp output in configuration file. (#437)

1.4. Changelog 15

FAST-OAD, Release unknown

1.4.12 Version 1.3.2

• Fixed:
– Compatibility with OpenMDAO 3.17.0. (#428)

1.4.13 Version 1.3.1

• Fixed:
– Version requirements for StdAtm and FAST-OAD-CS25 were unwillingly pinned to 0.1.x. (#422)

– fastoad -v was producing unknown when only FAST-OAD-core was installed. (#422)

– Fixed some deprecation warnings. (#423)

1.4.14 Version 1.3.0.post0

• Modified package organization. (#420)

1.4.15 Version 1.3.0

• Changes:
– Rework of plugin system. (#409 - #417)

∗ Plugin group identifier is now fastoad.plugins (usage of fastoad_model is deprecated)

∗ A plugin can now provide, besides models, notebooks and sample configuration files.

∗ CLI and API have been updated to allow choosing the source when generating a configura-
tion file, and to provide the needed information about installed plugin (fastoad plugin_info)

∗ Models are loaded only when needed (speeds up some basic operations like fastoad -h)

– CS25-related models are now in separate package [FAST-OAD-CS25](https://pypi.org/project/
fast-oad-cs25/). This package is still installed along with FAST-OAD to preserve backward-
compatibility. Also, package [FAST-OAD-core](https://pypi.org/project/fast-oad-core/) is now
available, which does NOT install FAST-OAD-CS25 (thus contains only the mission model). (#414)

– IndepVarComp variables in FAST-OAD models are now correctly handled and included in input data
file. (#408)

– Changes in mission module. Most noticeable change is that the number of engines is no more an
input of the mission module, but should be handled by the propulsion model. No impact when using
the base CS-25 process, since the variable name has not changed.(#411)

• Bug fixes:
– FAST-OAD is now able to manage dynamically shaped problem inputs. (#416 - #418)

16 Chapter 1. Contents

https://pypi.org/project/fast-oad-cs25/
https://pypi.org/project/fast-oad-cs25/
https://pypi.org/project/fast-oad-core/

FAST-OAD, Release unknown

1.4.16 Version 1.2.1

• Changes: - Updated dependency requirements. All used libraries are now compatible with Jupyter lab 3 without
need for building extensions. (#392) - Now Atmosphere class is part of the [stdatm](https://pypi.org/project/
stdatm/) package (#398) - For list_variables command, the output format can now be chosen, with the addition
of the format of variables_description.txt (for custom modules now generate a variable descriptions. (#399)

• Bug fixes: - Minor fixes in Atmosphere class. (#386)

1.4.17 Version 1.1.2

• Bug fixes:
– Engine setting could be ignored for cruise segments. (#397)

1.4.18 Version 1.1.1

• Bug fixes:
– Fixed usage of list_modules with CLI. (#395)

1.4.19 Version 1.1.0

• Changes:
– Added new submodel feature to enable a more modular approach. (#379)

– Implemented the submodel feature in the aerodynamic module. (#388)

– Implemented the submodel feature in the geometry module. (#387)

– Implemented the submodel feature in the weight module. (#385)

– Added the possibility to list custom modules. (#369)

– Updated high lift aerodynamics and rubber engine models. (#352)

– Added custom modules tutorial notebook. (#317)

• Bug fixes:
– Fixed incompatible versions of jupyter-client. (#390)

– Fixed the naming and description of the virtual taper ratio used in the wing geometry. (#383)

– Fixed some wrong file links and typos in CeRAS notebook. (#380)

– Fixed issues with variable descriptions in xml file. (#364)

1.4. Changelog 17

https://pypi.org/project/stdatm/
https://pypi.org/project/stdatm/

FAST-OAD, Release unknown

1.4.20 Version 1.0.5

• Changes:
– Now using the new WhatsOpt feature that allows to generate XDSM files without being registered

on server. (#361)

– Optimization viewer does no allow anymore to modify output values. (#372)

• Bug fixes:
– Compatibility with OpenMDAO 3.10 (which becomes the minimal required version). (#375)

– Variable descriptions can now be read from comment of XML data files, which fixes the missing
descriptions in variable viewer. (#359)

– Performance model: the computed taxi-in distance was irrelevant. (#368)

1.4.21 Version 1.0.4

• Changes:
– Enum classes in FAST-OAD models are now extensible by using aenum instead of enum. (#345)

• Bug fixes:
– Incompatibility with ruamel.yaml 0.17.5 and above has been fixed. (#344)

– Computation of partial derivatives for OpenMDAO was incorrectly declared in some components.
MDA, or MDO with COBYLA solver, were not affected. (#347)

– Errors in custom modules are no more hidden. (#348)

1.4.22 Version 1.0.3

• Changes:
– Configuration files can now contain unknown sections (at root level) to allow these files to be used

by other tools. (#333)

• Bug fixes:
– Importing, in a __init__.py, some classes that were registered as FAST-OAD modules could make

that the register process fails. (#331)

– When generating an input file using a data source, the whole data source was copied instead of just
keeping the needed variables. (#332)

– Instead of overwriting an existing input files, variables of previous file were kept. (#330)

– A variable that was connected to an output could be incorrectly labelled as input when listing problem
variables. (#341)

– Fixed broken links in Sphinx documentation, including docstrings. (#315)

18 Chapter 1. Contents

FAST-OAD, Release unknown

1.4.23 Version 1.0.2

• FAST-OAD now requires a lower version of ruamel.yaml. It should prevent Anaconda to try and fail to update
its “clone” of ruamel.yaml. (#308)

1.4.24 Version 1.0.1

• Bug fixes:
– In a jupyter notebook, each use of a filter in variable viewer caused the display of a new variable

viewer. (#301)

– Wrong warning message was displayed when an incorrect path was provided for module_folders in
the configuration file. (#303)

1.4.25 Version 1.0.0

• Core software:
– Changes:

∗ FAST-OAD configuration file is now in YAML format. (#277)

∗ Module declaration are now done using Python decorators directly on registered classes.
(#259)

∗ FAST-OAD now supports custom modules as plugins. (#266)

∗ Added “fastoad.loop.wing_position” module for computing wing position from target static
margin in MDA. (#268)

∗ NaN values in input data are now detected at computation start. (#273)

∗ Now api.generate_inputs() returns the path of generated file. (#254)

∗ fastoad list_systems is now fastoad list_modules and shows documentation for OpenMDAO
options. (#287)

∗ Connection of OpenMDAO variables can now be done in configuration file. (#263)

∗ More generic code for mass breakdown plots to ease usage for custom weight models. (#250)

∗ DataFile class has been added for convenient interaction with FAST-OAD data files. (#293)

∗ Moved some part of code to private API. What is still public will be kept and maintained.
(#295)

– Bug fixes:
∗ FAST-OAD was crashing when mpi4py was installed. (#272)

∗ Output of fastoad list_variables can now be redirected in a file. (#284)

∗ Activation of time-step mission computation in tutorial notebook is now functional. (#285)

∗ Variable viewer toolbar now works correctly in JupyterLab. (#288)

∗ N2 diagrams caused a 404 error in notebooks since OpenMDAO 3.7. (#289)

• Models:
– Changes:

∗ A notebook has been added that shows how to compute CeRAS-01 aircraft. (#275)

1.4. Changelog 19

FAST-OAD, Release unknown

∗ Unification of performance module. (#251)
· Breguet computations are now defined using the mission input file.

· A computed mission can now be integrated or not to the sizing process.

∗ Better management of speed parameters in Atmosphere class. (#281)

∗ More robust airfoil profile processing. (#256)

∗ Added tuner parameter in computation of compressibility. (#258)

1.4.26 Version 0.5.4-beta

• Bug fix: An infinite loop could occur if custom modules were declaring the same variable several times with
different units or default values.

1.4.27 Version 0.5.3-beta

• Added compatibility with OpenMDAO 3.4, which is now the minimum required version of OpenMDAO. (#231)

• Simplified call to VariableViewer. (#221)

• Bug fix: model for compressibility drag now takes into account sweep angle and thickness ratio. (#237)

• Bug fix: at installation, minimum version of Scipy is forced to 1.2. (#219)

• Bug fix: SpeedChangeSegment class now accepts Mach number as possible target. (#234)

• Bug fix: variable “data:weight:aircraft_empty:mass has now “kg” as unit. (#236)

1.4.28 Version 0.5.2-beta

• Added compatibility with OpenMDAO 3.3. (#210)

• Added computation time in log info. (#211)

• Fixed bug in XFOIL input file. (#208)

• Fixed bug in copy_resource_folder(). (#212)

1.4.29 Version 0.5.1-beta

• Now avoids apparition of numerous deprecation warnings from OpenMDAO.

1.4.30 Version 0.5.0-beta

• Added compatibility with OpenMDAO 3.2.

• Added the mission performance module (currently computes a fixed standard mission).

• Propulsion models are now declared in a specific way so that another module can do a direct call to the needed
propulsion model.

20 Chapter 1. Contents

data:weight:aircraft_empty:mass

FAST-OAD, Release unknown

1.4.31 Version 0.4.2-beta

• Prevents installation of OpenMDAO 3.2 and above for incompatibility reasons.

• In Breguet module, output values for climb and descent distances were 1000 times too large (computation was
correct, though).

1.4.32 Version 0.4.0-beta

Some changes in mass and performances components:
• The Breguet performance model can now be adjusted through input variables in the “settings” section.

• The mass-performance loop is now done through the “fastoad.loop.mtow” component.

1.4.33 Version 0.3.1-beta

• Adapted the FAST-OAD code to handle OpenMDAO version 3.1.1.

1.4.34 Version 0.3.0-beta

• In Jupyter notebooks, VariableViewer now has a column for input/output type.

• Changed base OAD process so that propulsion model can now be directly called by the performance module
instead of being a separate OpenMDAO component (which is still possible, though). It prepares the import of
FAST legacy mission-based performance model.

1.4.35 Version 0.2.2-beta

• Changed dependency requirement to have OpenMDAO version at most 3.1.0 (FAST-OAD is not yet compatible
with 3.1.1)

1.4.36 Version 0.2.1-beta

• Fixed compatibility with wop 1.9 for XDSM generation

1.4.37 Version 0.2.0b

• First beta release

1.4.38 Version 0.1.0a

• First alpha release

1.4. Changelog 21

FAST-OAD, Release unknown

1.5 General documentation

Here you will find the first things to know about FAST-OAD.

1.5.1 Installation procedure

Prerequisite:FAST-OAD needs at least Python 3.7.0.

It is recommended (but not required) to install FAST-OAD in a virtual environment (conda, venv. . .)

Once Python is installed, FAST-OAD can be installed using pip.

Note: If your network uses a proxy, you may have to do some settings for pip to work correctly

You can install the latest version with this command:

$ pip install --upgrade fast-oad

1.5.2 FAST-OAD overview

FAST-OAD is a framework for performing rapid Overall Aircraft Design.

It proposes multi-disciplinary analysis and optimisation by relying on the OpenMDAO framework.

FAST-OAD allows easy switching between models for a same discipline, and also adding/removing disciplines to match
the need of your study.

Currently, FAST-OAD is bundled with models for commercial transport aircraft of years 1990-2000. Other models
will come and you may create your own models and use them instead of bundled ones.

How it works

A FAST-OAD run wraps up an OpenMDAO problem, which is, in a nutshell, the assembly of components that each
have input and output variables. Of course, the outputs of some component can be the inputs of some other ones, so
that the whole system can be solved.

FAST-OAD allows to define the problem to solve (or to optimize) through a configuration file that makes easy to
add/remove/replace any component. By doing that, the input data of the problem can be very different from one
problem to the other, but FAST-OAD comes with facilities to build the needed input data files.

A FAST-OAD problem can be fully run from command line interface or from the Python API.

Usage of Python API, including pre-processing and post-processing utilities are currently provided through Python
notebooks.

Overview of FAST-OAD files

A typical run of FAST-OAD uses two types of user files:

22 Chapter 1. Contents

https://docs.conda.io/en/latest/
https://docs.python.org/3.7/library/venv.html
https://pip.pypa.io/en/stable/user_guide/#using-a-proxy-server
https://openmdao.org/

FAST-OAD, Release unknown

configuration file (.yml)

This file defines the OpenMDAO problem by defining :

• what components will be in the problem

• the files for input and output data

• the problem settings

• the definition of the optimization problem if needed

A detailed description of this file can be found here.

The input and output data files (.xml)

These files contain the information of the variables involved in the system model:

1. The input file contains the global inputs values required to run all the model. The user is free to modify the values
of the variables in order that these new values are considered during a model run.

2. The output file contains all the variables (inputs + outputs) values obtained after a model run.

The content of these files and the way variables are named and serialized is described here.

1.5.3 Usage

FAST-OAD uses a configuration file for defining your OAD problem. You can interact with this problem using com-
mand line or Python directly.

You may also use some lower-level features of FAST-OAD to interact with OpenMDAO systems. This part is addressed
in the API documentation.

Contents

• Usage

– FAST-OAD configuration file

∗ Custom module path

∗ Input and output files

∗ Problem driver

∗ Solvers

∗ Problem definition

∗ Model options

∗ Optimization settings

· Design variables

· Objective function

· Constraints

– Using FAST-OAD through Command line

1.5. General documentation 23

FAST-OAD, Release unknown

∗ How to get information about available plugins

∗ How to generate a configuration file

∗ How to get list of registered modules

∗ How to get list of variables

∗ How to generate an input file

∗ How to generate a source data file

∗ How to view the problem process

· N2 diagram

· XDSM

∗ How to run the problem

· Run Multi-Disciplinary Analysis

· Run Multi-Disciplinary Optimization

– Using FAST-OAD through Python

FAST-OAD configuration file

FAST-OAD configuration files are in YAML format. A quick tutorial for YAML (among many ones) is available here

title: Sample OAD Process

List of folder paths where user added custom registered OpenMDAO components
module_folders:

Input and output files
input_file: ./problem_inputs.xml
output_file: ./problem_outputs.xml

Definition of problem driver assuming the OpenMDAO convention "import openmdao.api as␣
→˓om"
driver: om.ScipyOptimizeDriver(tol=1e-2, optimizer='COBYLA')

Definition of OpenMDAO model
Although "model" is a mandatory name for the top level of the model, its
sub-components can be freely named by user
model:

Solvers are defined assuming the OpenMDAO convention "import openmdao.api as om"
nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1e-2)
linear_solver: om.DirectSolver()

Components can be put in sub-groups
subgroup:

A group can be set with its own solvers.

(continues on next page)

24 Chapter 1. Contents

https://yaml.org
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started/

FAST-OAD, Release unknown

(continued from previous page)

nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1e-2, iprint=0)
linear_solver: om.DirectSolver()

geometry:
An OpenMDAO component is identified by its "id"
id: fastoad.geometry.legacy

weight:
id: fastoad.weight.legacy

mtow:
id: fastoad.mass_performances.compute_MTOW

hq_tail_sizing:
id: fastoad.handling_qualities.tail_sizing

hq_static_margin:
id: fastoad.handling_qualities.static_margin

wing_position:
id: fastoad.loop.wing_position

aerodynamics_highspeed:
id: fastoad.aerodynamics.highspeed.legacy

aerodynamics_lowspeed:
id: fastoad.aerodynamics.lowspeed.legacy

aerodynamics_takeoff:
id: fastoad.aerodynamics.takeoff.legacy

aerodynamics_landing:
id: fastoad.aerodynamics.landing.legacy
use_xfoil: false

performance:
id: fastoad.performances.mission
propulsion_id: fastoad.wrapper.propulsion.rubber_engine
mission_file_path: ::sizing_breguet
mission_file_path: ::sizing_mission
out_file: ./flight_points.csv
adjust_fuel: true
is_sizing: true

wing_area:
id: fastoad.loop.wing_area

optimization: # This section is needed only if optimization process is run
design_variables:
- name: data:geometry:wing:aspect_ratio
lower: 9.0
upper: 18.0

constraints:
- name: data:geometry:wing:span
upper: 60.0

objective:
- name: data:mission:sizing:needed_block_fuel
scaler: 1.e-4

Now in details:

1.5. General documentation 25

FAST-OAD, Release unknown

Custom module path

module_folders:

Provides the path where user can have his custom OpenMDAO modules. See section How to add custom OpenMDAO
modules to FAST-OAD.

Input and output files

input_file: ./problem_inputs.xml
output_file: ./problem_outputs.xml

Specifies the input and output files of the problem. They are defined in the configuration file and DO NOT APPEAR
in the command line interface.

Problem driver

driver: om.ScipyOptimizeDriver(tol=1e-2, optimizer='COBYLA')

This belongs the domain of the OpenMDAO framework and its utilization. This setting is needed for optimization
problems. It is defined as in Python when assuming the OpenMDAO convention import openmdao.api as om.

For more details, please see the OpenMDAO documentation on drivers.

Solvers

model:
nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1e-2)
linear_solver: om.DirectSolver()

This is the starting point for defining the model of the problem. The model is a group of components. If the model
involves cycles, which happens for instance when some outputs of A are inputs of B, and vice-versa, it is necessary to
specify solvers as done above.

For more details, please see the OpenMDAO documentation on nonlinear solvers and linear solvers.

Problem definition

model:
nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1e-2)
linear_solver: om.DirectSolver()

Components can be put in sub-groups
subgroup:

A group can be set with its own solvers.

nonlinear_solver: om.NonlinearBlockGS(maxiter=100, atol=1e-2, iprint=0)
(continues on next page)

26 Chapter 1. Contents

http://openmdao.org/twodocs/versions/latest/features/building_blocks/drivers/index.html
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/nonlinear/index.html
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/linear/index.html

FAST-OAD, Release unknown

(continued from previous page)

linear_solver: om.DirectSolver()

geometry:
An OpenMDAO component is identified by its "id"
id: fastoad.geometry.legacy

weight:
id: fastoad.weight.legacy

mtow:
id: fastoad.mass_performances.compute_MTOW

hq_tail_sizing:
id: fastoad.handling_qualities.tail_sizing

hq_static_margin:
id: fastoad.handling_qualities.static_margin

wing_position:
id: fastoad.loop.wing_position

aerodynamics_highspeed:
id: fastoad.aerodynamics.highspeed.legacy

aerodynamics_lowspeed:
id: fastoad.aerodynamics.lowspeed.legacy

aerodynamics_takeoff:
id: fastoad.aerodynamics.takeoff.legacy

aerodynamics_landing:
id: fastoad.aerodynamics.landing.legacy
use_xfoil: false

performance:
id: fastoad.performances.mission
propulsion_id: fastoad.wrapper.propulsion.rubber_engine
mission_file_path: ::sizing_breguet
mission_file_path: ::sizing_mission
out_file: ./flight_points.csv
adjust_fuel: true
is_sizing: true

wing_area:
id: fastoad.loop.wing_area

Components of the model can be modules, or sub-groups. They are defined as a sub-section of model:. Sub-sections
and sub-components can be freely named by user.

A sub-group gathers several modules and/or other sub-groups and can be set with its own solvers to resolve cycles it
may contains, using keys linear_solver and nonlinear_solver, like model (that is merely the root group).

Here above, a sub-group with geometric, weight, handling-qualities and aerodynamic modules is defined and internal
solvers are activated. Performance and wing area computation modules are set apart.

A module is defined by its id: key that refers to the module registered name.

Additional keys can be used in model, sub-groups and modules. They are interpreted as option settings:

• For model and sub-groups, the OpenMDAO options for Group class apply.

• For FAST-OAD modules, the list of available options is available through the list_modules sub-command (see
How to get list of registered modules).

1.5. General documentation 27

FAST-OAD, Release unknown

Model options

OpenMDAO 3.27 introduced a new way to set options for any component in the problem, using the model_options
attribute of the Problem object (see OpenMDAO documentation here).

This can be controlled from the configuration file, using for instance:

model_options:
"*":
propulsion_id: fastoad.wrapper.propulsion.rubber_engine

"aerodynamics.*":
use_xfoil: true

With above lines, we set the "propulsion_id" option for all concerned components in the problem, and we set the
"use_xfoil" option for all components inside the aerodynamics module (please see OpenMDAO documentation
for more examples using wildcards).

Note:
• Please note that the wildcards have to be (double) quoted.

• This feature is especially convenient to set options for sub-components of the declared models, since these options
are not directly accessible from the configuration file.

Optimization settings

This settings are used only when using optimization (see Run Multi-Disciplinary Optimization). They are ignored when
doing analysis (see Run Multi-Disciplinary Analysis).

The section is identified by:

optimization:

Design variables

design_var:
- name: data:geometry:wing:MAC:at25percent:x
lower: 16.0
upper: 18.0

Here are defined design variables (relevant only for optimization). Keys of this section are named after parameters of
the OpenMDAO System.add_design_var() method

Several design variables can be defined.

Also, see How to get list of variables.

28 Chapter 1. Contents

https://openmdao.org/newdocs/versions/latest/features/core_features/options/options.html#setting-options-throughout-a-problem-model-problem-model-options
https://openmdao.org/newdocs/versions/latest/features/core_features/options/options.html#using-glob-patterns-to-set-different-option-values-in-different-systems
http://openmdao.org/twodocs/versions/latest/features/core_features/adding_desvars_objs_consts/adding_desvars.html?highlight=add_design_var

FAST-OAD, Release unknown

Objective function

objective:
- name: data:mission:sizing:fuel

Here is defined the objective function (relevant only for optimization). Keys of this section are named after parameters
of the OpenMDAO System.add_objective() method

Only one objective variable can be defined.

Also, see How to get list of variables.

Constraints

constraint:
- name: data:handling_qualities:static_margin
lower: 0.05
upper: 0.1

Here are defined constraint variables (relevant only for optimization). Keys of this section are named after parameters
of the OpenMDAO System.add_constraint() method

Several constraint variables can be defined.

Also, see How to get list of variables.

Using FAST-OAD through Command line

FAST-OAD can be used through shell command line or Python. This section deals with the shell command line, but if
you prefer using Python, you can skip this part and go to Using FAST-OAD through Python.

The FAST-OAD command is fastoad. Inline help is available with:

$ fastoad -h

fastoad works through sub-commands. Each sub-command provides its own inline help using

$ fastoad <sub-command> -h

How to get information about available plugins

FAST-OAD is built on a plugin architecture where each plugin can provide FAST-OAD modules, Jupyter notebooks
and sample configuration files (see plugin addition),

A list of installed plugins can be obtained with:

$ fastoad plugin_info

1.5. General documentation 29

http://openmdao.org/twodocs/versions/latest/features/core_features/adding_desvars_objs_consts/adding_objectives.html?highlight=add_objective
http://openmdao.org/twodocs/versions/latest/features/core_features/adding_desvars_objs_consts/adding_constraints.html?highlight=add_constraint

FAST-OAD, Release unknown

How to generate a configuration file

FAST-OAD can provide a ready-to use configuration.

$ fastoad gen_conf my_conf.yml --from_package my_plugin_package --source sample_
→˓configuration_1.yml

This copies the file sample_configuration_1.yml`provided by installed package
:code:`my_plugin_package to file my_conf.yml.

See how to get plugin information for listing the values you can put for options --from_package and --source.

If only one package is available, option --from_package may be omitted. If the selected package provides only one
configuration file, option --source may be omitted.

Hence with FAST-OAD installed (version below 2.0) without additional plugin, the command can be:

$ fastoad gen_conf my_conf.yml

How to get list of registered modules

If you want to change the list of components in the model in the configuration file, you need the list of available modules.

List of FAST-OAD modules can be obtained with:

$ fastoad list_modules

If you added custom modules in your configuration file my_conf.yml (see how to add custom OpenMDAO modules
to FAST-OAD), they can be listed along FAST-OAD modules with:

$ fastoad list_modules my_conf.yml

You may also use the --verbose option to get detailed information on each module, including the available options,
if any.

How to get list of variables

Once your problem is defined in my_conf.yml, you can get a list of the variables of your problem with:

$ fastoad list_variables my_conf.yml

How to generate an input file

The name of the input file is defined in your configuration file my_conf.yml. This input file can be generated with:

$ fastoad gen_inputs my_conf.yml

The generated file will be an XML file that contains needed inputs for your problem. Values will be the default values
from module definitions, which means several ones will be “nan”. Actual value must be filled before the process is run.

If you already have a file that contains these values, you can use it to populate your new input files with:

30 Chapter 1. Contents

FAST-OAD, Release unknown

$ fastoad gen_inputs my_conf.yml my_ref_values.xml

If you are using the configuration file provided by the gen_conf sub-command (see How to generate a configuration
file), you may download our CeRAS01_baseline.xml and use it as source for generating your input file. You may also
generate a source data file using the appropriate command (see How to generate a source data file)

How to generate a source data file

As for the configuration file, FAST-OAD can provide a source data file usable for the generation of your input file.

$ fastoad gen_source_data_file my_source_data_file.xml --from_package my_plugin_package -
→˓-source sample_source_data_file_1.xml

This copies the file sample_source_data_file_1.xml provided by installed package my_plugin_package to file
my_source_data_file.xml.

The remarks made in section how to generate a configuration file on options --from_package and --source remain
valid when generating a source data file.

How to view the problem process

FAST-OAD proposes two graphical ways to look at the problem defined in configuration file. This is especially useful
to see how models and variables are connected.

N2 diagram

FAST-OAD can use OpenMDAO to create a N2 diagram. It provides in-depth information about the whole process.

You can create a n2.html file with:

$ fastoad n2 my_conf.yml

XDSM

Using WhatsOpt as web service, FAST-OAD can provide a XDSM.

XDSM offers a more synthetic view than N2 diagram.

As it uses a web service, you need an internet access for this command, but you do not need to be a registered user on
the WhatsOpt server.

You can create a xdsm.html file with:

$ fastoad xdsm my_conf.yml

Note: It may take a couple of minutes

Also, you may see WhatsOpt developer documentation to run your own server. In such case, you will address your
server by using the --server option:

1.5. General documentation 31

https://github.com/fast-aircraft-design/FAST-OAD/raw/v0.1a/src/fastoad/notebooks/tutorial/data/CeRAS01_baseline.xml
http://openmdao.org/twodocs/versions/latest/features/model_visualization/n2_basics.html
https://github.com/OneraHub/WhatsOpt
https://mdolab.engin.umich.edu/wiki/xdsm-overview
https://whatsopt.readthedocs.io/en/latest/install.html

FAST-OAD, Release unknown

$ fastoad xdsm my_conf.yml --server https://the/address/of/my/WhatsOpt/server

How to run the problem

Run Multi-Disciplinary Analysis

Once your problem is defined in my_conf.yml, you can simply run it with:

$ fastoad eval my_conf.yml

Note: This is equivalent to OpenMDAO’s run_model()

Run Multi-Disciplinary Optimization

You can also run the defined optimization with:

$ fastoad optim my_conf.yml

Note: This is equivalent to OpenMDAO’s run_driver()

Using FAST-OAD through Python

The command line interface can generate Jupyter notebooks that show how to use the high-level interface of FAST-
OAD.

To do so, type this command in your terminal:

$ fastoad notebooks

Then run the Jupyter server as indicated in the obtained message.

1.5.4 Problem variables

FAST-OAD process relies on OpenMDAO, and process variables are OpenMDAO variables.

For any component, variables are declared as inputs or outputs as described here.

FAST-OAD uses the promotion system of OpenMDAO, which means that all variables that are exchanged between
FAST-OAD registered systems1 have a unique name and are available for the whole process.

The list of variable names and descriptions for a given problem can be obtained from command line (see How to get
list of variables).

• Variable naming

1 see Register your system(s)

32 Chapter 1. Contents

https://openmdao.org/
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/declaring_variables.html
http://openmdao.org/twodocs/versions/latest/basic_guide/promote_vs_connect.html

FAST-OAD, Release unknown

• Serialization

– File format

– FAST-OAD API

Variable naming

Variables are named with a path-like pattern where path separator is :, e.g.:

• data:geometry:wing:area

• data:weight:airframe:fuselage:mass

• data:weight:airframe:fuselage:CG:x

The first path element distributes variables among three categories:

• data: variables that define the aircraft and its behaviour. This is the main category

• settings: model settings. Generally coefficients for advanced users

• tuning: coefficients that allow to do some assumptions (e.g.: “what if wing mass could be reduced of 20%?”)

The second path element tells about the nature of the variable (geometry, aerodynamics, weight, . . .).

The other path elements depend of the variable. The number of path elements is not fixed.

Serialization

File format

For writing input and output files, FAST-OAD relies on the path in the variable names.

For instance, the variable name data:geometry:wing:area will be split according to colons : and each part of the
name will become a level in the XML hierarchy:

<data>
<geometry>

<wing>
<area units="m**2">

150.0
</area>

</wing>
</geometry>

</data>

A complete file that would contain the three above-mentioned variables will be as following:

<FASTOAD_model>
<data>

<geometry>
<wing>

<area units="m**2">150.0</area>
</wing>

</geometry>
<weight>

(continues on next page)

1.5. General documentation 33

FAST-OAD, Release unknown

(continued from previous page)

<fuselage>
<mass units="kg">10000.0</mass>
<CG>

<x units="m">20.0</x>
</CG>

</fuselage>
</weight>

</data>
</FASTOAD_model>

Note: Units are given as a string according to OpenMDAO units definitions

Note: XML requires a unique root element for containing all other ones. Its name can be freely chose, but it is
FASTOAD_model in files written by FAST-OAD

FAST-OAD API

FAST-OAD proposes a convenient way to read/write such files in Python, through the DataFile class.

Provided that above file is named data.xml, following commands apply:

>>> import fastoad.api as oad
>>> # ---------------------------------
>>> datafile = oad.DataFile("./data.xml")
>>> # Getting information
>>> datafile.names()
['data:geometry:wing:area', 'data:weight:fuselage:mass', 'data:weight:fuselage:CG:x']
>>> len(datafile)
3
>>> datafile["data:geometry:wing:area"].value
[150.0]
>>> datafile["data:geometry:wing:area"].units
'm**2'
>>> # ---------------------------------
>>> # Writing data
>>> datafile.save()
>>> # ---------------------------------
>>> # Modifying data
>>> datafile["data:geometry:wing:area"].value = 120.0 # no need to provide list or␣
→˓numpy array for scalar values.
>>> datafile["data:geometry:wing:area"].value
120.0
>>> # ---------------------------------
>>> # Adding data
>>> fuselage_length = oad.Variable("data:geometry:fuselage:length", val=35.0, units="m")
>>> datafile.append(fuselage_length)
>>> # or ...
>>> datafile["data:geometry:wing:mass"] = dict(val=10500.0, units="kg") # will replace␣
→˓previous definition (continues on next page)

34 Chapter 1. Contents

http://openmdao.org/twodocs/versions/latest/features/units.html

FAST-OAD, Release unknown

(continued from previous page)

>>> datafile.names()
['data:geometry:wing:area', 'data:weight:fuselage:mass', 'data:weight:fuselage:CG:x',
→˓'data:geometry:fuselage:length', 'data:geometry:wing:mass']
>>> # ---------------------------------
>>> # Removing data
>>> del datafile["data:weight:fuselage:CG:x"]
>>> datafile.names()
['data:geometry:wing:area', 'data:weight:fuselage:mass', 'data:geometry:fuselage:length',
→˓ 'data:geometry:wing:mass']
>>> # ---------------------------------
>>> # Writing to another file
>>> datafile.save_as("./new_data.xml", overwrite=True)
>>> datafile.file_path # The object is now associated to the new path
'./new_data.xml'

After running these lines of code, the generated file new_data.xml contains:

<FASTOAD_model>
<data>

<geometry>
<fuselage>

<length units="m">35.0</length>
</fuselage>
<wing>

<area units="m**2">120.0</area>
<mass units="kg">10500.0</mass>

</wing>
</geometry>
<weight>

<fuselage>
<mass units="kg">10000.0</mass>

</fuselage>
</weight>

</data>
</FASTOAD_model>

1.5.5 Mission module

Here you will find information about the performance module in FAST-OAD.

1.5. General documentation 35

FAST-OAD, Release unknown

Defining missions

Here you will find information about the mission definition files for the FAST-OAD performance module.

Mission file

• General description

• File sections

– Phase definition section

– Specific takeoff phase definition section

– Route definition section

– Mission definition section

• Factorizing parameters

General description

A mission file describes precisely one or several missions that could be computed by the performance model fastoad.
performances.mission of FAST-OAD.

The file format of mission files is the YAML format. A quick tutorial for YAML (among many ones) is available here.

The mission definition relies on 4 concepts that are, from lowest level to the highest one: segments, phases, routes and
missions. They are summarized in this table:

Table 1: Mission elements
Type Parts Description
seg-
ment

N/A

The basic bricks that are provided by FAST-OAD. They are
described in this specific page.

phase

segment(s) and/or
phase(s)

A free assembly of one or more segments and/or other phases.

route

zero or more phase(s)
one cruise segment
zero or more phase(s)

A route is a climb/cruise/descent sequence with a fixed range.
The range is achieved by adjusting the distance covered during
the cruise part.

mis-
sion

routes and/or phases
and/or segments

A mission is what is computed by fastoad.performances.mission.
Generally, it begins when engine starts and ends when engine
stops.

36 Chapter 1. Contents

https://yaml.org
https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started/

FAST-OAD, Release unknown

Important: Starting with version 1.4.0 of FAST-OAD, any mission has to use a variable for mass input. This variable
can be defined using the start segment, if it provides the mass at mission start (typically a ramp-up weight), or using
the mass_input segment otherwise (typically a takeoff weight, achieved after the taxi-out).

In the case no variable is defined for input mass, FAST-OAD will automatically add, at the beginning of the mission, a
taxi-out and a very simple takeoff phase (transition segment) with a mass_input segment. In that case, the input mass
is given by the data:mission:<mission_name>:TOW variable, which represents the aircraft mass just after takeoff.

This addition of taxi-out, takeoff and mass input allows to keep compatibility with mission definitions for FAST-OAD
versions earlier than 1.4.

(Please note that takeoff weight should be actually considered as the mass just before takeoff, but this way of doing is
kept for maximum backward-compatibility)

File sections

The organization of a mission definition file is organized in sections according to above-defined concepts.

• Phase definition section

• Specific takeoff phase definition section

• Route definition section

• Mission definition section

Phase definition section

This section, identified by the phases keyword, defines flight phases. A flight phase is defined as an assembly of one
or more flight segment(s).

Basically, a phase has a name, and a parts attribute that contains a list of segment definitions.

Nevertheless, it is also possible to set, at phase level, the parameters that are common to several segments of the phase.

The phase section only defines flight phases, but not their usage, that is defined in route and mission sections. Therefore,
the definition order of flight phases has no importance.

Note: Some parameters may be more conveniently set at an upper level than segment-level. See section Factorizing
parameters to see how.

Example:

phases:
initial_climb: # Phase name
parts: # Definition of segment list
- segment: altitude_change # 1st segment (climb)
polar: data:aerodynamics:aircraft:takeoff
thrust_rate: 1.0
target:
altitude:

(continues on next page)

1.5. General documentation 37

FAST-OAD, Release unknown

(continued from previous page)

value: 400.
unit: ft

equivalent_airspeed: constant
- segment: speed_change # 2nd segment (acceleration)
polar: data:aerodynamics:aircraft:takeoff
thrust_rate: 1.0
target:
equivalent_airspeed:
value: 250
unit: kn

- segment: altitude_change # 3rd segment (climb)
polar: data:aerodynamics:aircraft:takeoff
thrust_rate: 0.95
target:
altitude:
value: 1500.
unit: ft

equivalent_airspeed: constant
climb: # Phase name
... # Definition of the phase...

Specific takeoff phase definition section

The takeoff and associated manoeuvres may be simulated by assembling the specific segments. An exemple of takeoff
phase definition, as well as start-stop phase are given here:

Example:

takeoff:
engine_setting: takeoff
polar:
CL: data:aerodynamics:aircraft:takeoff:CL
CD: data:aerodynamics:aircraft:takeoff:CD
ground_effect: None # Ground effect model selection
CL0_clean: data:aerodynamics:aircraft:takeoff:CL0_clean
CL_alpha: data:aerodynamics:aircraft:takeoff:CL_alpha
CL_high_lift: data:aerodynamics:high_lift_devices:takeoff:CL

thrust_rate: 1.0
isa_offset: data:mission:operational:ISA_offset
parts:
- segment: ground_speed_change
target:
equivalent_airspeed:
value: data:mission:operational:takeoff:Vr

- segment: rotation
target:
delta_altitude:
value: 35
unit: ft

- segment: end_of_takeoff
time_step: 0.05

(continues on next page)

38 Chapter 1. Contents

FAST-OAD, Release unknown

(continued from previous page)

target:
delta_altitude:
value: 35
unit: ft

start_stop: # start - stop manoeuvre with only brakes on
engine_setting: takeoff
polar:
CL: data:aerodynamics:aircraft:takeoff:CL
CD: data:aerodynamics:aircraft:takeoff:CD
ground_effect: Raymer # Ground effect model selection
CL0_clean: data:aerodynamics:aircraft:takeoff:CL0_clean
CL_alpha: data:aerodynamics:aircraft:takeoff:CL_alpha
CL_high_lift: data:aerodynamics:high_lift_devices:takeoff:CL

thrust_rate: 1.0
isa_offset: data:mission:operational:ISA_offset
parts:
- segment: ground_speed_change
wheels_friction: 0.03
time_step: 0.05
target:
equivalent_airspeed:
value: data:mission:operational:takeoff:V1

- segment: ground_speed_change
engine_setting: idle
thrust_rate: 0.07
wheels_friction: 0.5
time_step: 0.05
target:
true_airspeed:
value: 0
unit: m/s

Route definition section

This section, identified by the routes keyword, defines flight routes. A flight route is defined as climb/cruise/descent
sequence with a fixed range. The range is achieved by adjusting the distance covered during the cruise part. Climb and
descent phases are computed normally.

A route is identified by its name and has 4 attributes:

• range: the distance to be covered by the whole route

• climb_parts: a list of items like phase : <phase_name>

• cruise_part: a segment definition, except that it does not need any target distance.

• descent_parts: a list of items like phase : <phase_name>

Example:

routes:
main_route:
range:
value: 3000.

(continues on next page)

1.5. General documentation 39

FAST-OAD, Release unknown

(continued from previous page)

unit: NM
climb_parts:
- phase: initial_climb
- phase: climb

cruise_part:
segment: cruise
engine_setting: cruise
polar: data:aerodynamics:aircraft:cruise
target:
altitude: optimal_flight_level

maximum_flight_level: 340
descent_parts:
- phase: descent

diversion:
range: distance
climb_parts:
- phase: diversion_climb

cruise_part:
segment: breguet
engine_setting: cruise
polar: data:aerodynamics:aircraft:cruise

descent_parts:
- phase: descent

Mission definition section

This is the main section. It allows to define one or several missions, that will be computed by the mission module.

A mission is identified by its name and has 3 attributes:

• parts: list of the phase and/or route names that compose the mission, with optionally a last item that is the
reserve (see below).

• use_all_block_fuel: if True, the range of the main route of the mission will be adjusted so that all block fuel
(provided as input data:mission:<mission_name>:block_fuel) will be consumed for the mission, excepted the
reserve, if defined. The provided range for first route is overridden but used as a first guess to initiate the iterative
process.

The mission name is used when configuring the mission module in the FAST-OAD configuration file. If there is only
one mission defined in the file, naming it in the configuration file is optional.

Note: About reserve
The reserve keyword is typically designed to define fuel reserve as stated in EU-OPS 1.255.

It defines the amount of fuel that is expected to be still in tanks once the mission is complete. It takes as reference one
of the route that composes the mission (ref attribute). The reserve is defined as the amount of fuel consumed during
the referenced route, multiplied by the coefficient provided as the multiplier attribute.

Example:

missions:
sizing:

(continues on next page)

40 Chapter 1. Contents

FAST-OAD, Release unknown

(continued from previous page)

parts:
- phase: taxi_out
- phase: takeoff
- route: main_route
- route: diversion
- phase: holding
- phase: landing
- phase: taxi_in
- reserve:

ref: main_route
multiplier: 0.03

operational:
parts:
- phase: taxi_out
- phase: takeoff
- route: main_route
- phase: landing
- phase: taxi_in

fuel_driven:
parts:
- phase: taxi_out
- phase: takeoff
- route: main_route
- phase: landing
- phase: taxi_in

use_all_block_fuel: true

Factorizing parameters

Some parameters may be common to several segments and have same value across all of them. In such case, it is
possible to define them at higher level (i.e. phase, route or mission) to avoid repeating them.

For example, to specify a temperature increment at mission level, the mission section could be:

missions:
operational:
isa_offset: 15.0 # It will apply to the whole mission
parts:
- route: main_route
- phase: landing
- phase: taxi_in

A high-level parameter definition will be overloaded by a lower-level definition, as illustrated in this example of phase
definition:

phases:
initial_climb: # Phase name
engine_setting: takeoff # ---------------
polar: data:aerodynamics:aircraft:takeoff # Common segment
thrust_rate: 1.0 # parameters
time_step: 0.2 # ---------------

(continues on next page)

1.5. General documentation 41

FAST-OAD, Release unknown

(continued from previous page)

parts: # Definition of segment list
- segment: altitude_change # 1st segment (climb)
target:
altitude:
value: 400.
unit: ft

equivalent_airspeed: constant
- segment: speed_change # 2nd segment (acceleration)
target:
equivalent_airspeed:
value: 250
unit: kn

- segment: altitude_change # 3rd segment (climb)
thrust_rate: 0.95 # --> PHASE THRUST RATE VALUE IS OVERWRITTEN
target:
altitude:
value: 1500.
unit: ft

equivalent_airspeed: constant

Flight segments

Flight segments are the Python-implemented, base building blocks for the mission definition.

They can be used as parts in phase definition.

A segment simulation starts at the flight parameters (altitude, speed, mass. . .) reached at the end of the previous
simulated segment. The segment simulation ends when its target is reached (or if it cannot be reached).

Sections:

• Segment types

• Segment target

• Special segment parameters

Segment types

In the following, the description of each segment type links to the documentation of the Python implementation. All
parameters of the Python constructor can be set in the mission file (except for propulsion and reference_area that
are set within the mission module). Most of these parameters are scalars and can be set as described here. The segment
target is a special parameter, detailed in further section. Other special parameters are detailed in last section.

Available segments are:

• start segment

• mass_input segment

• speed_change segment

42 Chapter 1. Contents

FAST-OAD, Release unknown

• altitude_change segment

• cruise segment

• optimal_cruise segment

• holding segment

• taxi segment

• transition segment

• ground_speed_change segment

• rotation segment

• end_of_takeoff segment

• takeoff segment

start segment

New in version 1.4.0.

start is a special segment to be used at the beginning of the mission definition to specify the starting point of the
mission, preferably by defining variables so it can be controlled from FAST-OAD input file.

With no start specified, the mission is assumed to start at altitude 0.0, speed 0.0.

Note: The start segment allows to define the aircraft mass at the beginning of the mission. Yet it is possible to define
aircraft mass at some intermediate phase (e.g. takeoff) using the mass_input segment.

Important: In any case, a variable for input mass has to be defined once and only once in the whole mission.

Example:

phases:
start_phase:
- segment: start
target:
true_airspeed: 0.0 # hard-coded value
altitude:
value: my:altitude:variable # variable definition WITH associated default␣

→˓value
unit: ft
default: 100.0

mass:
value: my:mass:variable # variable definition WITHOUT associated␣

→˓default value
unit: kg # (will have to be set by another module or by␣

→˓FAST-OAD
input file)

...
(continues on next page)

1.5. General documentation 43

FAST-OAD, Release unknown

(continued from previous page)

missions:
main_mission:
parts:
- phase: start_phase
- ...

See also:
Python documentation: Start

mass_input segment

New in version 1.4.0.

The start segment allows to define aircraft mass at the beginning of the mission, but it is sometimes needed to define
the aircraft mass at some point in the mission. The typical example would be the need to specify a takeoff weight that
is expected to be achieved after the taxi-out phase.

The mass_input segment is designed to address this need. It will ensure this mass is achieved at the specify instant
in the mission by setting the start mass input accordingly.

Example:

For setting mass at the end of taxi-out:
phases:
taxi-out:
parts:
- segment: taxi
...

- segment: mass_input
target:
mass:
value: my:MTOW:variable
unit: kg

Warning: Currently, FAST-OAD assumes the fuel consumption before the mass_input segment is independent
of aircraft mass, which is considered true in a phase such as taxi. Assuming otherwise would require to solve an
additional inner loop. Since it does not correspond to any use case we currently know of, it has been decided to
stick to the simple case.

See also:
Python documentation: MassTargetSegment

44 Chapter 1. Contents

FAST-OAD, Release unknown

speed_change segment

A speed_change segment simulates an acceleration or deceleration flight part, at constant altitude and thrust rate. It
ends when the target speed (mach, true_airspeed or equivalent_airspeed) is reached.

Example:

segment: speed_change
polar: data:aerodynamics:aircraft:takeoff # High-lift devices are ON
engine_setting: takeoff
thrust_rate: 1.0 # Full throttle
target:
altitude: constant # Assumed by default
equivalent_airspeed: # Acceleration up to EAS = 250 knots
value: 250
unit: kn

See also:
Python documentation: SpeedChangeSegment

altitude_change segment

An altitude_change segment simulates a climb or descent flight part at constant thrust rate. Typically, it ends when
the target altitude is reached.

But also, a target speed can be set, while keeping another speed constant (e.g. climbing up to Mach 0.8 while keeping
equivalent_airspeed constant).

Examples:

segment: altitude_change
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: idle
thrust_rate: 0.15 # Idle throttle
target: # Descent down to 10000. feet at constant EAS
altitude:
value: 10000.
unit: ft

equivalent_airspeed: constant

segment: altitude_change
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: climb
thrust_rate: 0.93 # Climb throttle
target: # Climb up to Mach 0.78 at constant EAS
equivalent_airspeed: constant
mach: 0.78

segment: altitude_change
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: climb
thrust_rate: 0.93 # Climb throttle
target: # Climb at constant Mach up to the flight

(continues on next page)

1.5. General documentation 45

FAST-OAD, Release unknown

(continued from previous page)

mach: constant # level that provides maximum lift/drag
altitude: # at current mass.
value: optimal_flight_level

maximum_CL: 0.6 # Limitation on lift coefficient.
The altitude will be limited to the closest
flight level within the CL limitation.

See also:
Python documentation: AltitudeChangeSegment

cruise segment

A cruise segment simulates a flight part at constant speed and altitude, and regulated thrust rate (drag is compensated).

Optionally, target altitude can be set to optimal_flight_level. In such case, cruise will be preceded by a climb
segment that will put the aircraft at the altitude that will minimize the fuel consumption for the whole segment (including
the prepending climb). This option is available because the altitude_change segment segment can reach an altitude that
will optimize the lift/drag ratio at current mass, but the obtained altitude will not guaranty an optimal fuel consumption
for the whole cruise.

It ends when the target ground distance is covered (including the distance covered during prepending climb, if any).

Examples:

segment: cruise
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: cruise
target:
altitude: constant # Not needed, because assumed by default
ground_distance: # Cruise for 2000 nautical miles
value: 2000
unit: NM

segment: cruise
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: cruise
target:
altitude: optimal_flight_level # Commands a prepending climb, id needed
ground_distance: # Cruise for 2000 nautical miles
value: 2000
unit: NM

See also:
Python documentation: ClimbAndCruiseSegment

46 Chapter 1. Contents

FAST-OAD, Release unknown

optimal_cruise segment

An optimal_cruise segment simulates a cruise climb, i.e. a cruise where the aircraft climbs gradually to keep being
at altitude of maximum lift/drag ratio.

The optimal_cruise segment can be realised at a constant lift coefficient using the parameter maximum_CL.

It assumed the segment actually starts at altitude of maximum lift/drag ratio or the altitude given by maximum_CL, which
can be achieved with an altitude_change segment segment with optimal_altitude as target altitude and maximum_CL
as parameter.

The common way to optimize the fuel consumption for commercial aircraft is a step climb cruise. Such segment will be
implemented in the future.

Example:

segment: optimal_cruise
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
engine_setting: cruise
maximum_CL: 0.6
target:
ground_distance: # Cruise for 2000 nautical miles
value: 2000
unit: NM

See also:
Python documentation: OptimalCruiseSegment

holding segment

A holding segment simulates a flight part at constant speed and altitude, and regulated thrust rate (drag is compen-
sated). It ends when the target time is covered.

Example:

segment: holding
polar: data:aerodynamics:aircraft:cruise # High speed aerodynamic polar
target:
altitude: constant # Not needed, because assumed by default
time:
value: 20 # 20 minutes holding
unit: min

See also:
Python documentation: HoldSegment

1.5. General documentation 47

FAST-OAD, Release unknown

taxi segment

A taxi segment simulates the mission parts between gate and takeoff or landing, at constant thrust rate. It ends when
the target time is covered.

Example:

segment: taxi
thrust_rate: 0.3
target:
time:
value: 300 # taxi for 300 seconds (5 minutes)

See also:
Python documentation: TaxiSegment

transition segment

A transition segment is intended to “fill the gaps” when some flight part is not available for computation or is needed
to be assessed without spending CPU time.

It can be used in various ways:

• Target definition

• Usage of a mass ratio

• Reserve mass ratio

Target definition

The most simple way is specifying a target with absolute and/or relative parameters. The second and last point of the
flight segment will simply uses these values.

Example:

segment: transition # Rough simulation of a takeoff
target:
delta_time: 60 # 60 seconds after start point
delta_altitude: # 35 ft above start point
value: 35
unit: ft

delta_mass: -80.0 # 80kg lost from start point
true_airspeed: 85 # 85m/s at end of segment.

48 Chapter 1. Contents

FAST-OAD, Release unknown

Usage of a mass ratio

As seen above, it is possible to force a mass evolution of a certain amount by specifying delta_mass.

It is also possible to specify a mass ratio. This can be done outside the target, as a segment parameter.

Example:

segment: transition # Rough climb simulation
mass_ratio: 0.97 # Aircraft end mass will be 97% of total start mass
target:
altitude: 10000.
mach: 0.78
delta_ground_distance: # 250 km after start point.
value: 250
unit: km

Reserve mass ratio

Another segment parameter is reserve_mass_ratio. When using this parameter, another flight point is added to
computed segment, where the aircraft mass is decreased by a fraction of the mass that remains at the end of the segment
(including this reserve consumption).

Typically, it will be used as last segment to compute a reserve based on the Zero-Fuel-Weight mass.

Example:

segment: transition # Rough reserve simulation
reserve_mass_ratio: 0.06
target:
altitude: 0.
mach: 0.

See also:
Python documentation: DummyTransitionSegment

ground_speed_change segment

New in version 1.5.0.

This segment is used specifically during accelerating or decelerating parts while still on the ground. The friction force
with the ground is accounted in the equation of movements. Whilst on the ground, the key wheels_friction is used
to define the friction coefficient. The segment ends when the target velocity is reached.

Example:

segment: ground_speed_change
wheels_friction: 0.03
target:
equivalent_airspeed:
value: data:mission:operational:takeoff:Vr

See also:
Python documentation: GroundSpeedChangeSegment

1.5. General documentation 49

FAST-OAD, Release unknown

rotation segment

New in version 1.5.0.

This segment is used to represent a rotation while still on the ground. This segment is specifically used for takeoff. The
specific keys are (in addition to wheel friction coefficient):

rotation_rate in (rad/s) is the rotation speed used to realise the manoeuvre (by default 3deg/s, compliant with CS-25
)

alpha_limit (in rad) is the maximum angle of attack possible before tail strike (by default 13.5deg).

The segment ends when lift equals weight. Therefore, no target needs to be set.

Example:

segment: rotation
wheels_friction: 0.03
rotation_rate:
value: 0.0523

alpha_limit:
value: 0.3489

See also:
Python documentation: RotationSegment

end_of_takeoff segment

New in version 1.5.0.

This segment is used at the end of the takeoff phase, between lift off and before reaching the safety altitude. The target
sets the safety altitude. Because this phase is quite dynamic, it is a good practice to lower the time step at least to 0.05s
for a good accuracy on takeoff distance.

Example:

segment: end_of_takeoff
time_step: 0.05
target:
delta_altitude:
value: 35
unit: ft

See also:
Python documentation: EndOfTakeoffSegment

50 Chapter 1. Contents

FAST-OAD, Release unknown

takeoff segment

New in version 1.5.0.

This segment is the sequence of ground_speed_change segment, rotation segment and end_of_takeoff segment.

The parameters for this segment are the same as for its 3 components, except that:

• time_step is used only for ground_speed_change segment and rotation segment.

• time step for end_of_takeoff segment is driven by the additional parameter end_time_step

• target speed at end of ground_speed_change segment is driven by the additional parameter
rotation_equivalent_airspeed

• the target of takeoff segment is the target of end_of_takeoff segment, meaning it sets the safety altitude.

Example:

segment: takeoff
wheels_friction: 0.03
rotation_equivalent_airspeed:
value: data:mission:operational:takeoff:Vr

rotation_rate:
value: 0.0523
units: rad/s

rotation_alpha_limit:
value: 0.3489
units: rad

end_time_step: 0.05
target:
delta_altitude:
value: 35
unit: ft

See also:
Python documentation: TakeOffSequence

Segment target

The target of a flight segment is a set of parameters that drives the end of the segment simulation.

Possible target parameters are the available fields of FlightPoint. The actually useful parameters depend on the
segment.

Each parameter can be set the usual way, generally with a numeric value or a variable name, but it can also be a string.
The most common string value is constant that tells the parameter value should be kept constant and equal to the start
value. In any case, please refer to the documentation of the flight segment.

1.5. General documentation 51

FAST-OAD, Release unknown

Absolute and relative values

Amost all target parameters are considered as absolute values, i.e. the target is considered reached if the named param-
eter gets equal to the provided value.

They can also be specified as relative values, meaning that the target is considered reached if the named parameter gets
equal to the provided value added to start value. To do so, the parameter name will be preceded by delta_.

Examples:

target:
altitude: # Target will be reached at 35000 ft.
value: 35000
unit: ft

target:
delta_altitude: # Target will be 5000 ft above the start altitude of the segment.
value: 5000
unit: ft

Important: There are 2 exceptions : ground_distance and time are always considered as relative values. Therefore,
delta_ground_distance and delta_time will have the same effect.

Special segment parameters

Most of segment parameters must be set with a unique value, which can be done in several ways, as described here.

There are some special parameters that are detailed below.

• engine_setting parameter

• polar parameter(s)

engine_setting parameter

Expected value for engine_setting are takeoff, climb , cruise or idle

This setting is used by the “rubber engine” propulsion model (see class RubberEngine). It roughly links the “turbine
inlet temperature” (a.k.a. T4) to the flight conditions.

If another propulsion model is used, this parameter may become irrelevant, and then can be omitted.

52 Chapter 1. Contents

https://fast-oad-cs25.readthedocs.io/en/latest/api/fastoad_cs25.models.propulsion.fuel_propulsion.rubber_engine.rubber_engine.html#fastoad_cs25.models.propulsion.fuel_propulsion.rubber_engine.rubber_engine.RubberEngine

FAST-OAD, Release unknown

polar parameter(s)

The aerodynamic polar defines the relation between lift and drag coefficients (respectively CL and CD). This parameter
is composed of two vectors of same size, one for CL, and one for CD.

The polar parameter has 2 sub-keys that are CL and CD.

A basic example would be:

segment: cruise
polar:
CL: [0.0, 0.5, 1.0]
CD: [0.01, 0.03, 0.12]

But generally, polar values will be obtained through variable names, because they will be computed during the process,
or provided in the input file. This should give:

segment: cruise
polar:
CL: data:aerodynamics:aircraft:cruise:CL
CD: data:aerodynamics:aircraft:cruise:CD

Additionally, a convenience feature is proposes, which assumes CL and CD are provided by variables with same names,
except one ends with :CL and the other one by :CD. In such case, providing only the common prefix is enough.

Therefore, the next example is equivalent to the previous one:

segment: cruise
polar: data:aerodynamics:aircraft:cruise

Setting values in mission file

Any parameter value in the mission file can be provided in several ways:

• hard-coded value and unit

• hard-coded value with no unit

• OpenMDAO variable

• Contextual OpenMDAO variable

hard-coded value and unit

The standard way is to set the parameter as value, with or without unit.

Note: If no unit is provided while parameter needs one, SI units will be assumed.

Provided units have to match OpenMDAO convention.

Examples:

1.5. General documentation 53

https://openmdao.org/newdocs/versions/latest/features/units.html

FAST-OAD, Release unknown

altitude:
value: 10.
unit: km

altitude:
value: 10000. # equivalent to previous one (10km), because SI units are assumed

mach:
value: 0.8

engine_setting:
value: takeoff # some parameters expect a string value

hard-coded value with no unit

When no unit is provided, the value can be “inlined”. As for hard-coded value and unit, if the concerned parameter is
not dimensionless, SI units will be assumed.

Example:

mach: 0.8 # no unit
altitude: 10000. # == 10 km
engine_setting: takeoff # string value

OpenMDAO variable

It is possible to provide a variable name instead of a hard-coded value. This variable will be declared as input of the
OpenMDAO component.

Unit can be specified. In that case, it will be the unit for OpenMDAO declaration and usage. In any case, the unit for
computation will be the internal unit of the segments (SI units). Conversion will be done when needed.

Also, a default value can be specified, which will be the declared default value for OpenMDAO. It has to be consistent
with declared unit. If no default value is specified, numpy.nan will be used in OpenMDAO declaration.

Example:

altitude:
value: data:dummy_category:some_altitude
unit: ft
default: 35000.0

As for numeric values, the definition can be inlined if no unit or default value has to be declared:

54 Chapter 1. Contents

FAST-OAD, Release unknown

altitude: data:dummy_category:some_altitude

Using opposite value

Sometimes, it can be convenient to use the opposite value of a variable. It can be done by simply putting the minus
sign “-” just before the variable:

delta_mass:
value: -data:dummy_category:consumed_fuel
unit: kg
default: 125.0

Important: The specified default value is for the declared variable, even when the minus sign is used. Therefore, if
default value is set as negative and the variable is preceded by a minus sign, the actually used value (if the default value
is kept) will be positive.

Contextual OpenMDAO variable

By using the tilda (~) in the variable name, it is also possible to make the variable name contextual according to the
hierarchy the defined parameter belongs to.

When a parameter value is defined as prefix~suffix, the actual variable name will be
prefix:<mission_name>:<route_name>:<phase_name>:suffix.

It is useful when defining a route or a phase that will be used in several missions (see Mission file).

Note:
• <route_name> and <phase_name> will be used only when applicable (see examples below).

• A contextual variable can be defined in a segment, but the variable will still be “associated” only to the phase.

If no prefix is provided (~suffix), the default prefix will be data:mission:.

If no suffix is provided (prefix~), the default suffix will be the parameter name.

It is also possible to have no prefix nor suffix (~). Then the 2 rules above apply.

Example

routes:
route_A:
range: ~distance # Example #1: here the suffix is customized.
parts:
- phase_a
- ...

phases:
phase_a:

(continues on next page)

1.5. General documentation 55

FAST-OAD, Release unknown

(continued from previous page)

thrust_rate: ~ # Example #2: default prefix and suffix will be used
time_step: settings:mission~ # Example #3: Here the prefix is customized

missions:
mission_1:
parts:
- ...
- route: route_A
- ...

mission_2:
parts:
- ...
- phase: phase_a
- ...

Example 1
route_A contains the parameter range where a contextual variable name is affected, that will use the default prefix
(data:mission:) and the customized suffix (distance).

route_A is used as a step by both mission_1 and mission_2.

Then the mission computation has among its inputs:

Table 2: Variable names
Prefix Hierarchy Suffix Full name
1 data:mission mission_1:route_A distance data:mission:mission_1:route_A:distance
1 data:mission mission_2:route_A distance data:mission:mission_2:route_A:distance

Examples 2 & 3
phase_a contains the parameters thrust_rate and time_step where contextual variable names are affected. For
thrust_rate, default prefix (data:mission:) and suffix (thrust_rate) will be used. For time_step, prefix is
customized (settings:mission) and default suffix (time_step) will be used.

phase_a is used as a step by route_A, that is used as a step by mission_1. phase_a is also used as a step directly
by mission_2.

Then the mission computation has among its inputs:

Table 3: Variable names
Prefix Hierarchy Suffix Full name
2 data:mission mis-

sion_1:route_A:phase_a
thrust_rate data:mission:mission_1:route_A:phase_a:thrust_rate

2 data:mission mission_2:phase_a thrust_rate data:mission:mission_2:phase_a:thrust_rate
3 data:settings mis-

sion_1:route_A:phase_a
time_step data:settings:mission_1:route_A:phase_a:time_step

3 data:settings mission_2:phase_a time_step data:settings:mission_2:phase_a:time_step

56 Chapter 1. Contents

FAST-OAD, Release unknown

Mission module

The FAST-OAD mission module allows to simulate missions and to estimate their fuel burn, which is an essential part
of the sizing process.

The module aims at versatility, by:

• providing a way to define missions from custom files

• linking mission inputs and outputs to the FAST-OAD data model

• linking or not a mission to the sizing process

Inputs and outputs of the module

The performance module, as any FAST-OAD module, is linked to the MDA process by the connection of its input
and output variables. But unlike other modules, the list of inputs and outputs is not fixed, and widely depends on the
mission definition.

The input variables are defined in the mission file, as described here.

Most outputs variables are automatically decided by the structure of the mission. Distance, duration and fuel burn are
provided as outputs for each part of the mission.

Outputs for the whole mission:

• data:mission:<mission_name>:distance

• data:mission:<mission_name>:duration

• data:mission:<mission_name>:fuel

Outputs for each part of the mission (flight route or flight phase):

• data:mission:<mission_name>:<part_name>:distance

• data:mission:<mission_name>:<part_name>:duration

• data:mission:<mission_name>:<part_name>:fuel

Outputs for each flight phase of a route:

• data:mission:<mission_name>:<route_name>:<phase_name>:distance

• data:mission:<mission_name>:<route_name>:<phase_name>:duration

• data:mission:<mission_name>:<route_name>:<phase_name>:fuel

Other mission-related variables are:

• data:mission:<mission_name>:TOW: TakeOff Weight. Input or output, depending on options below.

• data:mission:<mission_name>:needed_block_fuel: Burned fuel during mission. Output.

• data:mission:<mission_name>:block_fuel: Actual block fuel. Input or output, depending on options
below.

1.5. General documentation 57

FAST-OAD, Release unknown

Usage in FAST-OAD configuration file

The mission module can be used with the identifier :code`fastoad.performances.mission`.

The available parameters for this module are:

• propulsion_id

• mission_file_path

• out_file

• mission_name

• use_initializer_iteration

• adjust_fuel

• compute_TOW

• add_solver

• is_sizing

Detailed description of parameters

propulsion_id

• Mandatory
It is the identifier of a registered propulsion wrapper (see How to add a custom propulsion model to FAST-
OAD).

FAST-OAD comes with a parametric propulsion model adapted to engine of the 1990s, with "fastoad.
wrapper.propulsion.rubber_engine" as identifier.

mission_file_path

• Optional (Default = "::sizing_mission")

It is the path to the file that defines the mission. As any file path in the configuration file, it can be absolute
or relative. If relative, the path of configuration file will be used as basis.

FAST-OAD comes with two embedded missions, usable with special values:

• "::sizing_mission": a time-step simulation of a classical commercial mission with diversion
and holding phases

• "::sizing_breguet": a very quick simulation based on Breguet formula, with rough assessment
of fuel consumption during climb, descent, diversion and holding phases.

58 Chapter 1. Contents

FAST-OAD, Release unknown

out_file

• Optional

If provided, a CSV file will be written at provided path with all computed flight points.

If relative, the path of configuration file will be used as basis.

mission_name

• Mandatory if the used mission file defines several missions. Optional otherwise.

Sets the mission to be computed.

use_initializer_iteration

Optional (Default = true)

During first solver loop, a complete mission computation can fail or consume useless CPU-time. When
activated, this option ensures the first iteration is done using a simple, dummy, formula instead of the
specified mission.

Warning: Set this option to false if you do expect this model to be computed only once. Otherwise, the perfor-
mance computation will be done only by the initializer.

adjust_fuel

• Optional (Default = true)

If true, block fuel will be adjusted to fuel consumption during mission. If false, the input block fuel
will be used.

compute_TOW

• Optional (Default = false)

• Not used (actually forced to true) if adjust_fuel is true.

If true, TakeOff Weight will be computed from mission block fuel and ZFW.

If false, block fuel will be computed from TOW and ZFW.

1.5. General documentation 59

FAST-OAD, Release unknown

add_solver

• Optional (Default = false)

• Not used (actually forced to false) if compute_TOW is false.

Setting this option to False will deactivate the local solver of the component. Useful if a global solver is
used for the MDA problem.

is_sizing

• Optional (Default = false)

If true, TOW for the mission will be considered equal to MTOW and mission payload will be considered
equal to design payload (variable data:weight:aircraft:payload). Therefore, mission computation
will be linked to the sizing process.

Extensibility

In FAST-OAD mission module, segments are the base building blocks used in the mission definition file. They are
implemented in Python and FAST-OAD offers a set of segment types that allows defining typical aircraft mission
profiles.

Yet, the need for some other segment types may occur. This is why FAST-OAD mission module is designed so that
any user can develop new segment types and use them in a custom mission file.

Adding segment types

In FAST-OAD mission module, segments are the base building blocks used in the mission definition file. They are
implemented in Python and FAST-OAD offers a set of segment types that allows defining typical aircraft mission
profiles.

Yet, the need for some other segment types may occur. This is why FAST-OAD mission module is designed so that
any user can develop new segment types and use them in a custom mission file.

First of all, be aware that segment implementation relies on Python dataclasses. This chapter will assume you already
know how it works.

• Links between Python implementation and mission definition file

– Segment keyword

– Segment parameters

• Implementation of a segment class

– The AbstractFlightSegment class

– The AbstractTimeStepFlightSegment class

60 Chapter 1. Contents

https://docs.python.org/3/library/dataclasses.html

FAST-OAD, Release unknown

Links between Python implementation and mission definition file

Flight segment classes must all derive from AbstractFlightSegment.

Segment keyword

When subclassing, a keyword is associated to the class:

import fastoad.api as oad
from dataclasses import dataclass

@dataclass
class NewSegment(oad.AbstractFlightSegment, mission_file_keyword="new_segment"):

...

As soon as your code is interpreted, the mission_file_keyword will be usable in mission definition file when spec-
ifying segments:

phases:
some_phase:
parts:
- segment: taxi
...

- segment: new_segment
...

Note: Where to put the code for a new segment implementations?
Having your class in any imported Python module will do.

If you use FAST-OAD through Python, you are free to put your new segment classes where it suits you.

Also, know that FAST-OAD will make Python interpret any Python module in the module folders you declare in the
configuration file. This works also for declared plugins. In both cases, it is not mandatory to add custom FAST-OAD
modules.

Segment parameters

The other strong link between segment implementation and the mission definition file is that any dataclass field of the
defined segment class will be available as parameter in the mission definition file.

Given this implementation:

import fastoad.api as oad
from dataclasses import dataclass, field
from typing import List

@dataclass
class NewSegment(oad.AbstractFlightSegment, mission_file_keyword="new_segment"):

my_float: float = 0.0
my_bool: bool = True

(continues on next page)

1.5. General documentation 61

FAST-OAD, Release unknown

(continued from previous page)

my_array: List[float] = field(default_factory=list)
...

. . . the mission definition file will accept the following implementation:

phases:
some_phase:
parts:
- segment: new_segment
my_float: 50.0
my_bool: false
my_array: [10.0, 20.0, 30.0]
target:

...

Note: Defining mandatory parameters
It is possible to declare a segment parameter as mandatory (i.e. without associated default value) by using fastoad.
api.MANDATORY_FIELD:

import fastoad.api as oad
from dataclasses import dataclass

@dataclass
class NewSegment(oad.AbstractFlightSegment, mission_file_keyword="new_segment"):

my_mandatory_float: float = oad.MANDATORY_FIELD
...

This is a way to work around the fact that if a dataclass defines a field with a default value, inheritor classes will not be
allowed to define fields without default value, because then the non-default fields will follow a default field, which is
forbidden.

Implementation of a segment class

The AbstractFlightSegment class

As previously said, a segment class has to inherit from AbstractFlightSegment (and specify the mis-
sion_file_keyword if its usage is intended in mission definition files) and will be implemented like this:

import fastoad.api as oad
from dataclasses import dataclass, field
from typing import List

@dataclass
class NewSegment(oad.AbstractFlightSegment, mission_file_keyword="new_segment"):

my_float: float = 0.0
...

The main field of the class will be target, provided as a FlightPoint instance, which will contain the flight point
parameters set as target in the mission definition file.

62 Chapter 1. Contents

FAST-OAD, Release unknown

The instantiation in FAST-OAD will be like this:

import fastoad.api as oad

segment = NewSegment(target=oad.FlightPoint(altitude=5000.0, true_airspeed=200.0),
my_float=4.2,
...

)

Note: Instantiation arguments will always be passed as keyword arguments (this behavior can be enforced only for
Python 3.10+).

The new class will have to implement the method compute_from_start_to_target() that will be in charge of
computing the flight points between a provided start and a provided target (providing the result as a pandas DataFrame)

Note: The mission computation will actually call the method compute_from(), that will do the computation between
provided start and the target defined at instantiation (i.e. in the mission definition file).

This method does some generic pre-processing of start and target before calling
compute_from_start_to_target(). Therefore, in the vast majority of cases, implementing the latter will
be the correct thing to do.

The AbstractTimeStepFlightSegment class

AbstractTimeStepFlightSegment is a base class for segments that do time step computations.

This class has 4 main additional fields:

• propulsion, that is expected to be an IPropulsion instance.

• polar, that is expected to be a Polar instance.

• reference_area, that provides the reference surface area consistently with provided aerodynamic polar.

• time_step, that sets the time step for resolution. It is set with a low enough default value.

An inheritor class will have to provide the implementations for 3 methods that are used at each computed time
step: get_distance_to_target(), compute_propulsion() and get_gamma_and_acceleration(). (see each
method documentation for more information)

There are some specialized base classes that provide a partial implementation of AbstractTimeStepFlightSegment:

• AbstractManualThrustSegment implements compute_propulsion(). It has its own field, thrust_rate,
that is used to compute thrust.

• AbstractRegulatedThrustSegment also implements compute_propulsion(), but it adjusts the thrust rate
to have aircraft thrust equal to its drag.

• AbstractFixedDurationSegment implements get_distance_to_target(). It allows to compute a seg-
ment with a time duration set by the target.

1.5. General documentation 63

FAST-OAD, Release unknown

The FlightPoint class

The FlightPoint class is designed to store flight parameters for one flight point of any computed mission.

FlightPoint class is meant for:

• storing all needed parameters that are needed for performance modelling, including propulsion parameters.

• easily exchanging data with pandas DataFrame.

• being extensible for new parameters.

Note: All parameters in FlightPoint instances are expected to be in SI units.

Available flight parameters

The documentation of FlightPoint provides the list of available flight parameters, available as attributes. As Flight-
Point is a dataclass, this list is available through Python using:

>>> import fastoad.api as oad
>>> from dataclasses import fields

>>> [f.name for f in fields(oad.FlightPoint)]

Exchanges with pandas DataFrame

A pandas DataFrame can be generated from a list of FlightPoint instances:

>>> import pandas as pd
>>> import fastoad.api as oad

>>> fp1 = oad.FlightPoint(mass=70000., altitude=0.)
>>> fp2 = oad.FlightPoint(mass=60000., altitude=10000.)
>>> df = pd.DataFrame([fp1, fp2])

And FlightPoint instances can be created from DataFrame rows:

Get one FlightPoint instance from a DataFrame row
>>> fp1bis = oad.FlightPoint.create(df.iloc[0])

Get a list of FlightPoint instances from the whole DataFrame
>>> flight_points = oad.FlightPoint.create_list(df)

64 Chapter 1. Contents

FAST-OAD, Release unknown

Extensibility

FlightPoint class is bundled with several fields that are commonly used in trajectory assessment, but one might need
additional fields.

Python allows to add attributes to any instance at runtime, but for FlightPoint to run smoothly, especially when ex-
changing data with pandas, you have to work at class level. This can be done using add_field(), preferably outside
of any class or function:

Adds a float field with None as default value
>>> FlightPoint.add_field("ion_drive_power")

Adds a field and define its type and default value
>>> FlightPoint.add_field("warp", annotation_type=int, default_value=9)

Now these fields can be used at instantiation
>>> fp = FlightPoint(ion_drive_power=110.0, warp=12)

Removes a field, even an original one (useful only to avoid having it in outputs)
>>> FlightPoint.remove_field("sfc")

1.5.6 Adding modules to FAST-OAD

Here you will find information about custom modules in FAST-OAD.

How to add custom OpenMDAO modules to FAST-OAD

With FAST-OAD, you can register any OpenMDAO system of your own so it can be used through the configuration
file.

It is therefore strongly advised to have at least a basic knowledge of OpenMDAO to develop a module for FAST-OAD.

To have your OpenMDAO system available as a FAST-OAD module, you should follow these steps:

• Create your OpenMDAO system

• Register your system(s)

• Modify the configuration file

Create your OpenMDAO system

It can be a Group or a Component-like class (generally an ExplicitComponent).

You can create the Python file at the location of your choice. You will just have to provide later the folder path in
FAST-OAD configuration file (see Modify the configuration file).

1.5. General documentation 65

http://openmdao.org/twodocs/versions/latest
http://openmdao.org/twodocs/versions/latest/features/core_features/grouping_components/index.html
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/index.html
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/explicitcomp.html

FAST-OAD, Release unknown

Variable naming

You have to pay attention to the naming of your input and output variables. As FAST-OAD uses the promotion system
of OpenMDAO, which means that variables you want to link to the rest of the process must have the name that is given
in the global process.

Nevertheless, you can create new variables for your system:

• Outputs of your system will be available in output file and will be usable as any other variable.

• Unconnected inputs will simply have to be in the input file of the process. They will be automatically included
in the input file generated by FAST-OAD (see How to generate an input file).

• And if you add more than one system to the FAST-OAD process, outputs created by one of your system can of
course be used as inputs by other systems.

Also keep in mind that the naming of your variable will decide of its location in the input and output files. Therefore, the
way you name your new variables should be consistent with FAST-OAD convention, as explained in Problem variables.

Defining options

You may use the OpenMDAO way for adding options to your system. The options you add will be accessible from the
FAST-OAD configuration file (see Problem definition).

When declaring an option, the usage of the desc field if strongly advised, as any description you provide will be printed
along with module information with the list_modules sub-command (see How to get list of registered modules).

Definition of partial derivatives

Your OpenMDAO system is expected to provide partial derivatives for all its outputs in analytic or approximate way.

At the very least, for most Component classes, the setup() method of your class should contain:

self.declare_partials("*", "*", method='fd')

or for a Group class:

self.approx_totals()

The two lines above are the most generic and the least CPU-efficient ways of declaring partial derivatives. For better
efficiency, see how to work with derivatives in OpenMDAO.

About ImplicitComponent classes

In some cases, you may have to use ImplicitComponent classes.

Just remember, as told in this tutorial, that the loop that will allow to solve it needs usage of the NewtonSolver.

A good way to ensure it is to build a Group class that will solve the ImplicitComponent with NewtonSolver. This Group
should be the system you will register in FAST-OAD.

66 Chapter 1. Contents

http://openmdao.org/twodocs/versions/latest/basic_guide/promote_vs_connect.html
http://openmdao.org/twodocs/versions/latest/basic_guide/promote_vs_connect.html
http://openmdao.org/twodocs/versions/latest/features/core_features/working_with_derivatives/index.html
http://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/implicitcomp.html
http://openmdao.org/twodocs/versions/latest/advanced_guide/implicit_comps/defining_icomps.html
http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/nonlinear/newton.html#nlnewton

FAST-OAD, Release unknown

Checking validity domains

Generally, models are valid only when variable values are in given ranges.

OpenMDAO provides a way to specify lower and upper bounds of an output variable and to enforce them when using
a Newton solver by using backtracking line searches.

FAST-OAD proposes a way to set lower and upper bounds for input and output variables, but only for checking and
giving feedback of variables that would be out of bounds.

If you want your OpenMDAO class to do this checking, simply use the decorator ValidityDomainChecker:

@ValidityDomainChecker
class MyComponent(om.ExplicitComponent):

def setup(self):
self.add_input("length", 1., units="km")
self.add_input("time", 1., units="h")
self.add_output("speed", 1., units="km/h", lower=0., upper=130.)

The above code make that FAST-OAD will issue a warning if at the end of the computation, “speed” variable is not
between lower and upper bound.

But it is possible to set your own bounds outside of OpenMDAO by following this example:

@ValidityDomainChecker(
{

"length": (0.1, None), # Defines only a lower bound
"time": (0., 1.), # Defines lower and upper bounds
"speed": (None, 150.0), # Ignores original bounds and sets only upper bound

}
)
class MyComponent(om.ExplicitComponent):

def setup(self):
self.add_input("length", 1., units="km")
self.add_input("time", 1., units="h")
Bounds that are set here will still apply if backtracking line search is used,␣

→˓but
will not be used for validity domain checking because it has been replaced␣

→˓above
self.add_output("speed", 1., units="km/h", lower=0., upper=130.)

Register your system(s)

Once your OpenMDAO system is ready, you have to register it to make it known as a FAST-OAD module.

To do that, you just have to add the RegisterOpenMDAOSystem decorator to your OpenMDAO class like this:

import fastoad.api as oad
import openmdao.api as om

@oad.RegisterOpenMDAOSystem("my.custom.name")
class MyOMClass(om.ExplicitComponent):

[...]

1.5. General documentation 67

http://openmdao.org/twodocs/versions/latest/features/building_blocks/solvers/backtracking/index.html

FAST-OAD, Release unknown

Note: If you work with Jupyter notebook, remember that any change in your Python files will require the kernel to be
restarted.

Modify the configuration file

The folders that contain your Python files must be listed in module_folders in the FAST-OAD configuration file:

title: OAD Process with custom component

List of folder paths where user added custom registered OpenMDAO components
module_folders:

- /path/to/my/custom/module/folder
- /another/path/

[...]

Once this is done, (assuming your configuration file is named my_custom_conf.yml) your custom, registered, module
should appear in the list provided by the command line:

$ fastoad list_modules my_custom_conf.yml

Then your component can be used like any other using the id you have given.

Definition of OpenMDAO model
model:
[...]

my_custom_model:
id: "my.custom.name"

[...]

Note: FAST-OAD will inspect all sub-folders in a specified module folder, as long as they are Python packages, i.e.
if they contain a __init__.py file.

How to add a custom propulsion model to FAST-OAD

Propulsion models have a specific status because they are directly called by the performance models, so the connection
is not done through OpenMDAO.

By following instructions in this page, you should ensure your propulsion model will run smoothly with the existing
performance models. You will also be able to access your engine parameters through FAST-OAD process.

68 Chapter 1. Contents

FAST-OAD, Release unknown

The IPropulsion interface

When developing your propulsion model, to ensure that it will work smoothly with current performances models, you
have to do it in a class that implements the IPropulsion interface, meaning your class must have at least the 2 methods
compute_flight_points() and get_consumed_mass().

Computation of propulsion data

compute_flight_points() will modify the provided flight point(s) by adding propulsion-related parameters. A
conventional fuel engine will rely on parameters like mach, altitude and will provide parameters like sfc (Specific
Fuel Consumption).

Propulsion model inputs

For your model to work with current performance models, your model is expected to rely on known flight parameters,
i.e. the original parameters of FlightPoint.

See The FlightPoint class for more details.

Note: Special attention has to be paid to the thrust parameters. Depending on the flight phase, the aircraft can fly
in manual mode, with an imposed thrust rate, or in regulated mode, where propulsion has to give an imposed thrust.
Your model has to provide these two modes, and to use them as intended.

The thrust_is_regulated parameter tells what mode is on. If it is True, the model has to rely on the thrust
parameter. If it False, the model has to rely on the thrust_rate parameter.

Propulsion model outputs

If you work with the Breguet module, your model has to compute the sfc parameter.

But if you use the mission module, you have total freedom about the output of your model. If you want to use a
parameter that is not available, you can add it to the FlightPoint class as described above.

The only requirement is that you have to implement get_consumed_mass() accordingly for the mission module to
have a correct assessment of mass evolution.

Computation of consumed mass

The get_consumed_mass() simply provides the mass consumption over the provided time. It is meant to use the
parameters computed in compute_flight_points().

1.5. General documentation 69

FAST-OAD, Release unknown

The OpenMDAO wrapper

Once your propulsion model is ready, you have to make a wrapper around it for:

• having the possibility to choose it in the FAST-OAD configuration file

• having its parameters available in FAST-OAD data files

Defining the wrapper

Your wrapper class has to implement the IOMPropulsionWrapper interface, meaning it should implement the 2
methods get_model() and setup().

get_model() has to provide an instance of your model. If the constructor of your propulsion model class needs
parameters, you may get them from inputs, that will be the inputs parameter that OpenMDAO will provide to the
performance module when calling compute() method.

Therefore, the performance module will have to define the inputs that your propulsion model needs in its setupmethod,
as required by OpenMDAO. To do this, the setup method ot the performance module calls the setup() of your
wrapper, that is expected to define the needed input variables.

For an example, please see the source code of OMRubberEngineWrapper.

Registering the wrapper

Registering is needed for being able to choose your propulsion wrapper in FAST-OAD configuration file. Due to
the specific status of propulsion models, the registering process is a bit different that the one for classic OpenMDAO
modules.

The registering is done using the RegisterPropulsion decorator:

import fastoad.api as oad

@oad.RegisterPropulsion("star.trek.propulsion")
class WarpDriveWrapper(oad.IOMPropulsionWrapper):

[...]

Using the wrapper in the configuration file

As for other custom modules, the folder that contains your Python module(s) must be listed in the module_folders
of the configuration file.

The association of the propulsion model to the performance module is done with the propulsion_id keyword, as in
following example:

title: OAD Process with custom propulsion model

List of folder paths where user added custom registered OpenMDAO components
module_folders:

- /path/to/my/propulsion/wrapper/

(continues on next page)

70 Chapter 1. Contents

FAST-OAD, Release unknown

(continued from previous page)

[...]

Definition of OpenMDAO model
model:
[...]
performance:
id: fastoad.performances.mission
propulsion_id: star.trek.propulsion

How to document your variables

FAST-OAD can associate a description to each variable. Such description will be put as comment in datafiles, or
displayed along with other variable information, like in command line (see How to get list of variables).

The description of a variable can be defined in two ways:

• Defining variable description in your OpenMDAO component

• Defining variable description in dedicated files

Defining variable description in your OpenMDAO component

OpenMDAO natively allows to define the description of a variable when declaring it.

FAST-OAD will retrieve this information (the description has to be defined once, even if the variable is declared at
several locations).

Defining variable description in dedicated files

If you want to add description to your variables in a more centralized way, FAST-OAD will look for files named
variable_descriptions.txt that are dedicated to that.

The file content is expected to process one variable per line, containing the variable name and its description, separated
by ||, as in following example:

my:variable||The description of my:variable, as long as needed, but on one line.
Comments are allowed
my:other:variable || Another description (surrounding spaces are ignored)

FAST-OAD will search such files:

• in the root package of plugin modules (see How to add custom OpenMDAO modules to FAST-OAD as a plugin)

• in the root folder of module folders as declared in configuration file (see Modify the configuration file)

• in the same package as any class which is declared as FAST-OAD module (see Register your system(s))

In practice, here you can see what description files will be consider, depending on their location:

my_modules/
__init__.py
subpackage1

(continues on next page)

1.5. General documentation 71

https://openmdao.org/twodocs/versions/latest/features/core_features/defining_components/declaring_variables.html?highlight=desc

FAST-OAD, Release unknown

(continued from previous page)

__init__.py
model.py <- contains a class decorated with

RegisterOpenMDAOSystem
variable_descriptions.txt <- this file will be loaded

subpackage2
__init__.py
propulsion_model.py <- contains a class decorated with

RegisterOpenPropulsion
variable_descriptions.txt <- this file will be loaded

util
__init__.py
utility_module.py <- no registering done here
variable_descriptions.txt <- this file will NOT be loaded

variable_descriptions.txt <- this file will be loaded because it is in root␣
→˓folder/package

How to add custom OpenMDAO modules to FAST-OAD as a plugin

Once you have created your custom modules for FAST-OAD, you may want to share them with other users, which can
be done in two ways:

• Providing your code so they can copy it on their computer and have them set their custom_modules field ac-
cordingly in their FAST-OAD configuration file.

• Packaging your code as a FAST-OAD plugin and have them install it through pip or equivalent. This is the
subject of current chapter.

A FAST-OAD plugin can provide additional FAST-OAD modules, Jupyter notebooks, configuration files and source
data files:

• plugin-provided FAST-OAD modules are usable in configuration files, and can be listed and used in the same
way as native modules.

• Command line can be used by users to retrieve notebooks, configuration files and source data files.

Plugin structure

In your source folder, a typical plugin structure would be like this:

my_package/
__init__.py
configurations/

__init__.py
configuration_1.yaml
configuration_2.yaml

models/
__init__.py
my_model.py
some_subpackage/

__init__.py
some_more_code.py

notebooks/
(continues on next page)

72 Chapter 1. Contents

FAST-OAD, Release unknown

(continued from previous page)

__init__.py
any_data/

__init__.py
some_data.xml

awesome_notebook.ipynb
good_notebook.ipynb

source_data_files
__init__.py
source_data_file_1.xml
source_data_file_2.xml
source_data_file_3.xml

As shown above, the expected structure is composed of Python packages, i.e. every folder should contain a __init__.
py file, even if it contains only non-Python files (e.g. data for notebooks).

The root folder can be anywhere in your project structure, since plugin declaration will point to its location.

Expected folders in a plugin package are:

• models: contains Python code where FAST-OAD modules are registered.

• configurations: contains only configuration files in YAML format. No sub-folder is allowed. These config-
uration files will be usable through command line or API method generate_configuration_file().

• notebooks: contains any number of Jupyter notebooks and associated data, that will be made available to users
through command line.

• source_data_files: contains only source data files in XML format. As for the configurations pack-
age, no sub-folder is allowed. These source data files will be usable through command line or API method
generate_source_data_file().

Any of these folders is optional. Any other folder will be ignored.

Plugin packaging

To make your custom modules usable as a FAST-OAD plugin, you have to package them and declare your package as
a plugin with fastoad.plugins as plugin group name.

Here under is a brief tutorial about these operations using Poetry.

Note: If you are not familiar with Python packaging, it is recommended to look at this tutorial first. It presents the
important steps and notions of the packaging process, and the “classic” way using setuptools. And if you want to stick
to setuptools, check this page for details about plugin declaration.

• Plugin declaration

• Building

• Publishing

1.5. General documentation 73

https://python-poetry.org
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://setuptools.pypa.io/en/latest/
https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata

FAST-OAD, Release unknown

Plugin declaration

For the example, let’s consider that your project contains the package star_trek.drives, and that your project struc-
ture contains:

src/
star_trek/

__init__.py
drives/

__init__.py
configurations/
models/
notebooks/

...
...

As previously stated, your folder src/star_trek/drives does not have to contain all of the folders models,
configurations, notebooks nor source_data_files.

Assuming you project contains the package star_trek.drives that contains models you want to share, you can
declare your plugin in your pyproject.toml file with:

...

[tool.poetry]
Tells location of sources
packages = [

{ include = "star_trek", from = "src" },
]

...

Plugin declaration
[tool.poetry.plugins."fastoad.plugins"]
"ST_plugin" = "star_trek.drives"

...

Note: It is discouraged to declare several FAST-OAD plugins for a same project.

Once your pyproject.toml is set, you can do poetry install. Besides installing your project dependencies, it will
make your models locally available (i.e. you could use their identifiers in your FAST-OAD configuration file without
setting the custom_modules field)

74 Chapter 1. Contents

FAST-OAD, Release unknown

Building

You can build your package with the command line poetry build. Let’s assume your pyproject.toml file is
configured so that your project name is ST_drive_models, as below:

...

[tool.poetry]
name = "ST_drive_models"
version = "1.0.0"

Tells location of sources
packages = [

{ include = "star_trek", from = "src" },
]

...

Specify that Poetry is used for building the package
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

...

Plugin declaration
[tool.poetry.plugins."fastoad.plugins"]
"ST_plugin" = "star_trek.drives"
...

The command poetry build will create a dist folder with two files:

ST_drive_models-1.0.0.tar.gz and ST_drive_models-1.0.0-py3-none-any.whl (or something like this).

You may then have sent any of those two files to another user, who may then install your models using pip with:

$ pip install ST_drive_models-1.0.0-py3-none-any.whl # or ST_drive_models-1.0.0.tar.gz

Publishing

Once you have built your package, you may publish it on a a package repository. poetry publish will publish your
package on PyPI, provided that you have correctly set your account.

Note: Publishing on PyPI requires a valid account, and also that the chosen package name (defined by name field in
the pyproject.toml file) is unused, or already associated to your account.

Poetry can also publish to another destination.

Please see here for detailed information.

1.5. General documentation 75

https://pypi.org
https://python-poetry.org/docs/cli/#publish

FAST-OAD, Release unknown

Submodels in FAST-OAD

Warning: Submodel feature is still considered as experimental.

It as a feature for advanced users that want to replace a specific part of an existing FAST-OAD modules. At the very
minimum, it needs a good understanding of the existing module because the developer is left with the responsibility
to define a submodel that will work correctly in place of the original one.

Why submodels ?

FAST-OAD modules are generally associated to a discipline, and do all the related computations. For example, the
native weight module computes the masses and the centers of gravity of each aircraft part and of the whole aircraft.

Now, let’s say we want to modify the computation of wing mass. Then, we could add a new weight module where the
only difference will be in the wing mass computation. This is not satisfactory because it would makes us copy all the
code that is not related to wing mass.

To solve this problem, one solution would be to make smaller, more specific modules, and have them assembled in the
configuration file. But it would result in very complex configuration files, and we do not want that.

There comes the principle of submodels. By using the RegisterSubmodel class in a FAST-OAD module, it is possible
to allow some parts of the model to be changed later by a declared submodel.

How to use submodels in a custom module ?

Let’s consider you want to build a custom module that will compute the number of atoms in the fuselage and the wing
(don’t ask me why you would do that, it is just an assumption).

You would begin by creating two om.ExplicitComponent classes: CountWingAtoms and CountFuselageAtoms.
Then you would create the om.Group class that will be the registered FAST-OAD module. The Python code would
look like:

import openmdao.api as om
import fastoad.api as oad

class CountWingAtoms(om.ExplicitComponent):
"""Put any implementation here"""

class CountFuselageAtoms(om.ExplicitComponent):
"""Put any implementation here"""

class CountEmpennageAtoms(om.ExplicitComponent):
"""Put any implementation here"""

@oad.RegisterOpenMDAOSystem("count.atoms")
class CountAtoms(om.Group):

def setup(self):
wing_component = CountWingAtoms()
fuselage_component = CountFuselageAtoms()
empennage_component = CountEmpennageAtoms()
self.add_subsystem("wing", wing_component, promotes=["*"])
self.add_subsystem("fuselage", fuselage_component, promotes=["*"])
self.add_subsystem("empennage", empennage_component, promotes=["*"])

76 Chapter 1. Contents

FAST-OAD, Release unknown

In the above implementation, someone that would want to provide an alternate method to count atoms in the wing,
while keeping your method for fuselage, would have to provide its own FAST-OAD module, ideally by reusing your
CountFuselageAtoms class, but possibly by needlessly copying it in its own code.

To allow a simpler replacement of your submodels, you will need to use the RegisterSubmodel class like this:

import openmdao.api as om
import fastoad.api as oad

WING_ATOM_COUNTER = "atom_counter.wing"
FUSELAGE_ATOM_COUNTER = "atom_counter.fuselage"
EMPENNAGE_ATOM_COUNTER = "atom_counter.empennage"

@oad.RegisterSubmodel(WING_ATOM_COUNTER, "original.counter.wing)
class CountWingAtoms(om.ExplicitComponent):

"""Put any implementation here"""

@oad.RegisterSubmodel(FUSELAGE_ATOM_COUNTER, "original.counter.fuselage)
class CountFuselageAtoms(om.ExplicitComponent):

"""Put any implementation here"""

@oad.RegisterSubmodel(EMPENNAGE_ATOM_COUNTER, "original.counter.empennage)
class CountEmpennageAtoms(om.ExplicitComponent):

"""Put any implementation here"""

@oad.RegisterOpenMDAOSystem("count.atoms")
class CountAtoms(om.Group):

def setup(self):
wing_component = oad.RegisterSubmodel.get_submodel(WING_ATOM_COUNTER)
fuselage_component = oad.RegisterSubmodel.get_submodel(FUSELAGE_ATOM_COUNTER)
empennage_component = oad.RegisterSubmodel.get_submodel(EMPENNAGE_ATOM_COUNTER)
self.add_subsystem("wing", wing_component, promotes=["*"])
self.add_subsystem("fuselage", fuselage_component, promotes=["*"])
self.add_subsystem("empennage", empennage_component, promotes=["*"])

This has the same behavior as the previous one, but the second one will allow substitution of submodels, as shown in
next part.

In details, CountWingAtoms is declared as a submodel that fulfills the role of “wing atom counter”, identified by the
"atom_counter.wing" (that is put in constant :code:`WING_ATOM_COUNTER`to avoid typos, as it is used several
times). The same applies to the roles of “fuselage atom counter” and “empennage atom counter”.

In the CountAtoms class, the line oad.RegisterSubmodel.get_submodel(WING_ATOM_COUNTER) expresses the
requirement of getting a submodel that counts wing atoms.

Important: As long as only one declared submodel fulfills a requirement, the above instruction will be enough to
provide it.

See below how to manage several “concurrent” submodels.

1.5. General documentation 77

FAST-OAD, Release unknown

How to declare a custom submodel ?

As you have seen, we have already declared submodels in our previous custom module. The process for providing an
alternate submodel is identical:

import openmdao.api as om
import fastoad.api as oad

@oad.RegisterSubmodel("atom_counter.wing", "alternate.counter.wing")
class CountWingAtoms(om.ExplicitComponent):

"""Put another implementation here"""

At this point, there are now 2 available submodels for the “atom_counter.wing” requirement. If we do nothing else, the
command oad.RegisterSubmodel.get_submodel("atom_counter.wing") will raise an error because FAST-
OAD needs to be instructed which submodel to use.

How to select submodels

There are two ways to specify which submodel has to be used when several ones fulfill a given requirement:

• Using configuration file (recommended)

• Using Python

Using configuration file (recommended)

The recommended way to select submodels is to use FAST-OAD configuration files.

Note: When it comes to the specification of selected submodels, the configuration file will have the priority over
Python instructions.

The configuration file can be populated with a specific section that will state the submodels that should be chosen.

submodels:
atom_counter.wing: alternate.counter.wing
atom_counter.fuselage: original.counter.fuselage

In the above example, an alternate submodel is chosen for the “atom_counter.wing” requirement, whereas the original
submodel is chosen for the “original.counter.fuselage” requirement (whether there is another one defined or not). No
submodel is defined for the “atom_counter.empennage” requirement. It will be OK if only one submodel is available for
this requirement. Otherwise, an error will be raised, unless the submodel choice is done through Python (see below).

78 Chapter 1. Contents

FAST-OAD, Release unknown

Using Python

The second way to select submodels is to use Python.

You may insert the following line at module level (i.e. NOT in any class or function):

import fastoad.api as oad

oad.RegisterSubmodel.active_models["atom_counter.wing"] = "alternate.counter.wing"

Warning: In case several Python modules define their own chosen submodel for the same requirement, the last
interpreted line will preempt, which is not a reliable way to do.

Therefore, this should be reserved to your tests.

If you plan to provide your submodels to other people, it is recommended to avoid specifying the used submodel
through Python and let them manage that through their configuration file.

Deactivating a submodel

It is also possible to deactivate a submodel:

From the configuration file, it can be done with:

submodels:
atom_counter.wing: null # The empty string "" is also possible

From Python, it can be done with:

import fastoad.api as oad

oad.RegisterSubmodel.active_models["atom_counter.wing"] = None # The empty string "" is␣
→˓also possible

Then nothing will be done when the "atom_counter.wing" submodel will be called. Of course, one has to correctly
know which variables will be missing with such setting and what consequences it will have on the whole problem.

1.6 fastoad

1.6.1 fastoad package

Subpackages

fastoad.cmd package

Subpackages

Submodules

1.6. fastoad 79

FAST-OAD, Release unknown

fastoad.cmd.api module

API

class fastoad.cmd.api.UserFileType(value)
Bases: enum.Enum

An enumeration.

CONFIGURATION = 'configuration'

SOURCE_DATA = 'source_data'

fastoad.cmd.api.get_plugin_information(print_data=False)→ Dict[str,
fastoad.module_management._plugins.DistributionPluginDefinition]

Provides information about available FAST-OAD plugins.

Parameters print_data – if True, plugin data are displayed.

Returns a dict with installed package names as keys and matching FAST-OAD plugin definitions
as values.

fastoad.cmd.api.generate_notebooks(destination_path: str, overwrite: bool = False,
distribution_name=None)

Copies notebook folder(s) from available plugin(s).

Parameters
• destination_path – the inner structure of the folders will depend on the number of

installed package and the number of plugins they contain.

• overwrite – if True and destination_path exists, it will be removed before writing.

• distribution_name – the name of an installed package that provides notebooks

fastoad.cmd.api.generate_configuration_file(configuration_file_path: str, overwrite: bool = False,
distribution_name=None, sample_file_name=None)

Copies a sample configuration file from an available plugin.

Parameters
• configuration_file_path – the path of file to be written

• overwrite – if True, the file will be written, even if it already exists

• distribution_name – the name of the installed package that provides the sample con-
figuration file (can be omitted if only one plugin is available)

• sample_file_name – the name of the sample configuration file (can be omitted if the
plugin provides only one configuration file)

Returns path of generated file

Raises FastPathExistsError – if overwrite==False and configuration_file_path already exists

fastoad.cmd.api.generate_source_data_file(source_data_file_path: str, overwrite: bool = False,
distribution_name=None, sample_file_name=None)

Copies a sample source data file from an available plugin.

Parameters
• source_data_file_path – the path of file to be written

• overwrite – if True, the file will be written, even if it already exists

80 Chapter 1. Contents

https://docs.python.org/3.9/library/enum.html#enum.Enum
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

• distribution_name – the name of the installed package that provides the sample source
data file (can be omitted if only one plugin is available)

• sample_file_name – the name of the sample source data file (can be omitted if the
plugin provides only one source data file)

Returns path of generated file

Raises FastPathExistsError – if overwrite==False and source_file_path already exists

fastoad.cmd.api.generate_inputs(configuration_file_path: str, source_data_path: Optional[str] = None,
source_data_path_schema='native', overwrite: bool = False)→ str

Generates input file for the problem specified in configuration_file_path.

Parameters
• configuration_file_path – where the path of input file to write is set

• source_data_path – path of source data file data will be taken from

• source_data_path_schema – set to ‘legacy’ if the source file come from legacy FAST

• overwrite – if True, file will be written even if one already exists

Returns path of generated file

Raises FastPathExistsError – if overwrite==False and configuration_file_path already exists

fastoad.cmd.api.list_variables(configuration_file_path: str, out: Optional[Union[IO, str]] = None,
overwrite: bool = False, force_text_output: bool = False, tablefmt: str =
'grid')

Writes list of variables for the problem specified in configuration_file_path.

List is generally written as text. It can be displayed as a scrollable table view if: - function is used in an interactive
IPython shell - out == sys.stdout - force_text_output == False

Parameters
• configuration_file_path –

• out – the output stream or a path for the output file (None means sys.stdout)

• overwrite – if True and out parameter is a file path, the file will be written even if one
already exists

• force_text_output – if True, list will be written as text, even if command is used in
an interactive IPython shell (Jupyter notebook). Has no effect in other shells or if out
parameter is not sys.stdout

• tablefmt – The formatting of the requested table. Options are the same as those available
to the tabulate package. See tabulate.tabulate_formats for a complete list. If “var_desc”
the file will use the variable_descriptions.txt format.

Returns path of generated file, or None if no file was generated.

Raises FastPathExistsError – if overwrite==False and out is a file path and the file exists

fastoad.cmd.api.list_modules(source_path: Optional[Union[List[str], str]] = None, out: Optional[Union[IO,
str]] = None, overwrite: bool = False, verbose: bool = False,
force_text_output: bool = False)

Writes list of available systems. If source_path is given and if it defines paths where there are registered systems,
they will be listed too.

Parameters
• source_path – either a configuration file path, folder path, or list of folder path

1.6. fastoad 81

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

• out – the output stream or a path for the output file (None means sys.stdout)

• overwrite – if True and out is a file path, the file will be written even if one already
exists

• verbose – if True, shows detailed information for each system if False, shows only iden-
tifier and path of each system

• force_text_output – if True, list will be written as text, even if command is used in
an interactive IPython shell (Jupyter notebook). Has no effect in other shells or if out
parameter is not sys.stdout

Returns path of generated file, or None if no file was generated.

Raises FastPathExistsError – if overwrite==False and out is a file path and the file exists

fastoad.cmd.api.write_n2(configuration_file_path: str, n2_file_path: Optional[str] = None, overwrite: bool =
False)

Write the N2 diagram of the problem in file n2.html

Parameters
• configuration_file_path –

• n2_file_path – if None, will default to n2.html

• overwrite –

Returns path of generated file.

Raises FastPathExistsError – if overwrite==False and n2_file_path already exists

fastoad.cmd.api.write_xdsm(configuration_file_path: str, xdsm_file_path: Optional[str] = None, overwrite:
bool = False, depth: int = 2, wop_server_url: Optional[str] = None, dry_run:
bool = False)

Parameters
• configuration_file_path –

• xdsm_file_path – the path for HTML file to be written (will overwrite if needed)

• overwrite – if False, will raise an error if file already exists.

• depth – the depth analysis for WhatsOpt

• wop_server_url – URL of WhatsOpt server (if None, ether.onera.fr/whatsopt will be
used)

• dry_run – if True, will run wop without sending any request to the server. Generated
XDSM will be empty. (for test purpose only)

Returns path of generated file.

Raises FastPathExistsError – if overwrite==False and xdsm_file_path already exists

fastoad.cmd.api.evaluate_problem(configuration_file_path: str, overwrite: bool = False)→
fastoad.openmdao.problem.FASTOADProblem

Runs model according to provided problem file

Parameters
• configuration_file_path – problem definition

• overwrite – if True, output file will be overwritten

82 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

Returns the OpenMDAO problem after run

Raises FastPathExistsError – if overwrite==False and output data file of problem already ex-
ists

fastoad.cmd.api.optimize_problem(configuration_file_path: str, overwrite: bool = False, auto_scaling: bool
= False)→ fastoad.openmdao.problem.FASTOADProblem

Runs driver according to provided problem file

Parameters
• configuration_file_path – problem definition

• overwrite – if True, output file will be overwritten

• auto_scaling – if True, automatic scaling is performed for design variables and con-
straints

Returns the OpenMDAO problem after run

Raises FastPathExistsError – if overwrite==False and output data file of problem already ex-
ists

fastoad.cmd.api.optimization_viewer(configuration_file_path: str)
Displays optimization information and enables its editing

Parameters configuration_file_path – problem definition

Returns display of the OptimizationViewer

fastoad.cmd.api.variable_viewer(file_path: str, file_formatter:
Optional[fastoad.io.formatter.IVariableIOFormatter] = None,
editable=True)

Displays a widget that enables to visualize variables information and edit their values.

Parameters
• file_path – the path of file to interact with

• file_formatter – the formatter that defines file format. If not provided, default format
will be assumed.

• editable – if True, an editable table with variable filters will be displayed. If False, the
table will not be editable nor searchable, but can be stored in an HTML file.

Returns display handle of the VariableViewer

fastoad.cmd.cli module

Command Line Interface.

fastoad.cmd.cli_utils module

Utility functions for CLI interface.

fastoad.cmd.cli_utils.overwrite_option(func)
Decorator for adding the option for overwriting existing file.

Use force as argument of the function.

1.6. fastoad 83

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.cmd.cli_utils.out_file_option(func)
Decorator for writing command output in a file.

Use out_file and force as argument of the function.

fastoad.cmd.cli_utils.manage_overwrite(func: Callable, filename_func: Optional[Callable] = None,
**kwargs)

Runs func, that is expected to write a file, with provided keyword arguments args.

If the run throws FastPathExistsError, a question is displayed and user is asked for a yes/no answer. If yes is
given, arg[“overwrite”] is set to True and func is run again.

Parameters
• func – callable that will do the operation and is expected to return the path of written

element.

• filename_func – a function that provides the name of written file, given the value re-
turned by func

• kwargs – keyword arguments for func

Returns True if the file has been written,

fastoad.cmd.exceptions module

Exception for cmd package

exception fastoad.cmd.exceptions.FastPathExistsError(*args)
Bases: fastoad.exceptions.FastError

Raised when asked for writing a file/folder that already exists.

exception fastoad.cmd.exceptions.FastNoAvailableNotebookError(distribution_name=None)
Bases: fastoad.exceptions.FastError

Raised when no notebook is available for creation.

Module contents

fastoad.configurations package

Module contents

fastoad.gui package

Subpackages

Submodules

fastoad.gui.analysis_and_plots module

Defines the analysis and plotting functions for postprocessing

84 Chapter 1. Contents

FAST-OAD, Release unknown

fastoad.gui.analysis_and_plots.wing_geometry_plot(aircraft_file_path: str, name=None, fig=None, *,
file_formatter=None)→
plotly.graph_objs._figurewidget.FigureWidget

Returns a figure plot of the top view of the wing. Different designs can be superposed by providing an existing
fig. Each design can be provided a name.

Parameters
• aircraft_file_path – path of data file

• name – name to give to the trace added to the figure

• fig – existing figure to which add the plot

• file_formatter – the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns wing plot figure

fastoad.gui.analysis_and_plots.aircraft_geometry_plot(aircraft_file_path: str, name=None,
fig=None, *, file_formatter=None)→
plotly.graph_objs._figurewidget.FigureWidget

Returns a figure plot of the top view of the wing. Different designs can be superposed by providing an existing
fig. Each design can be provided a name.

Parameters
• aircraft_file_path – path of data file

• name – name to give to the trace added to the figure

• fig – existing figure to which add the plot

• file_formatter – the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns wing plot figure

fastoad.gui.analysis_and_plots.drag_polar_plot(aircraft_file_path: str, name=None, fig=None, *,
file_formatter=None)→
plotly.graph_objs._figurewidget.FigureWidget

Returns a figure plot of the aircraft drag polar. Different designs can be superposed by providing an existing fig.
Each design can be provided a name.

Parameters
• aircraft_file_path – path of data file

• name – name to give to the trace added to the figure

• fig – existing figure to which add the plot

• file_formatter – the formatter that defines the format of data file. If not provided,
default format will be assumed.

Returns wing plot figure

fastoad.gui.analysis_and_plots.mass_breakdown_bar_plot(aircraft_file_path: str, name=None,
fig=None, *, file_formatter=None, in-
put_mass_name='data:weight:aircraft:MTOW')
→
plotly.graph_objs._figurewidget.FigureWidget

Returns a figure plot of the aircraft mass breakdown using bar plots. Different designs can be superposed by
providing an existing fig. Each design can be provided a name.

1.6. fastoad 85

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

Parameters
• aircraft_file_path – path of data file

• name – name to give to the trace added to the figure

• fig – existing figure to which add the plot

• file_formatter – the formatter that defines the format of data file. If not provided,
default format will be assumed.

• input_mass_name – the variable name for the mass input as defined in the mission defi-
nition file.

Returns bar plot figure

fastoad.gui.analysis_and_plots.mass_breakdown_sun_plot(aircraft_file_path: str, *,
file_formatter=None, in-
put_mass_name='data:weight:aircraft:MTOW')

Returns a figure sunburst plot of the mass breakdown. On the left a MTOW sunburst and on the right a OWE
sunburst. Different designs can be superposed by providing an existing fig. Each design can be provided a name.

Parameters
• aircraft_file_path – path of data file

• file_formatter – the formatter that defines the format of data file. If not provided,
default format will be assumed.

• input_mass_name – the variable name for the mass input as defined in the mission defi-
nition file.

Returns sunburst plot figure

fastoad.gui.analysis_and_plots.payload_range_plot(aircraft_file_path: str, name='Payload-Range',
mission_name='operational', variable_of_interest:
Optional[str] = None, variable_of_interest_legend:
Optional[str] = None)

Returns a figure of the payload-range diagram. The diagram contains by default only the contour
but can also provide a heatmap of the grid points, if variable_of_interest is not None. Please note
that the data for the contour are expected in the variables data:payload_range:{mission_name}:range and
data:payload_range:{mission_name}:payload. Similarly, the data for the heatmap are expected in the vari-
ables data:payload_range:{mission_name}:grid:range, data:payload_range:{mission_name}:grid:payload and
data:payload_range:{mission_name}:grid:{variable_of_interest}.

Parameters
• aircraft_file_path – path of data file

• name – name to give to the trace added to the figure

• mission_name – name of the mission present in the data file to be plotted.

• variable_of_interest – variable of interest for the heatmap.

• variable_of_interest_legend – name to give to variable of interest in plot legend.

Returns payload-range plot figure

86 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.gui.exceptions module

Exception for GUI

exception fastoad.gui.exceptions.FastMissingFile
Bases: fastoad.exceptions.FastError

Raised when a file does not exist

fastoad.gui.mission_viewer module

Defines the analysis and plotting functions for postprocessing regarding the mission

class fastoad.gui.mission_viewer.MissionViewer
Bases: object

A class for facilitating the post-processing of mission and trajectories

add_mission(mission_data: Union[str, pandas.core.frame.DataFrame], name=None)
Adds the mission to the mission database (self.missions) :param mission_data: path of the mission file or
Dataframe containing the mission data :param name: name to give to the mission

display()
Display the user interface :return the display object

fastoad.gui.optimization_viewer module

Defines the variable viewer for postprocessing

class fastoad.gui.optimization_viewer.OptimizationViewer
Bases: object

A class for interacting with FAST-OAD Problem optimization information.

problem_configuration:
fastoad.io.configuration.configuration.FASTOADProblemConfigurator

Instance of the FAST-OAD problem configuration

dataframe
The dataframe which is the mirror of self.file

load(problem_configuration: fastoad.io.configuration.configuration.FASTOADProblemConfigurator)
Loads the FAST-OAD problem and stores its data.

Parameters problem_configuration – the FASTOADProblem instance.

save()
Save the optimization to the files. Possible files modified are:

• the .yml configuration file

• the input file (initial values)

• the output file (values)

display()
Displays the datasheet. load() must be ran before.

Returns display of the user interface:

1.6. fastoad 87

https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

load_variables(variables: fastoad.openmdao.variables.variable_list.VariableList, attribute_to_column:
Optional[Dict[str, str]] = None)

Loads provided variable list and replace current data set.

Parameters
• variables – the variables to load

• attribute_to_column – dictionary keys tell what variable attributes are kept and
the values tell what name will be displayed. If not provided, default translation will
apply.

get_variables(column_to_attribute: Optional[Dict[str, str]] = None)→
fastoad.openmdao.variables.variable_list.VariableList

Parameters column_to_attribute – dictionary keys tell what columns are kept and the
values tell whatvariable attribute it corresponds to. If not provided, default translation will
apply.

Returns a variable list from current data set

fastoad.gui.variable_viewer module

Defines the variable viewer for postprocessing

class fastoad.gui.variable_viewer.VariableViewer
Bases: object

A class for interacting with FAST-OAD files. The file data is stored in a pandas DataFrame. The class built so
that a modification of the DataFrame is instantly replicated on the file file. The interaction is achieved using a
user interface built with widgets from ipywidgets and Sheets from ipysheet.

A classical usage of this class will be:

df = VariableViewer() # instantiation of dataframe
file = AbstractOMFileIO('problem_outputs.file') # instantiation of file io
df.load(file) # load the file
df.display() # renders a ui for reading/modifying the file

file
The path of the data file that will be viewed/edited

dataframe
The dataframe which is the mirror of self.file

load(file_path: str, file_formatter: Optional[fastoad.io.formatter.IVariableIOFormatter] = None)
Loads the file and stores its data.

Parameters
• file_path – the path of file to interact with

• file_formatter – the formatter that defines file format. If not provided, default
format will be assumed.

save(file_path: Optional[str] = None, file_formatter: Optional[fastoad.io.formatter.IVariableIOFormatter] =
None)
Save the dataframe to the file.

Parameters

88 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

• file_path – the path of file to save. If not given, the initially read file will be over-
written.

• file_formatter – the formatter that defines file format. If not provided, default
format will be assumed.

display()
Displays the datasheet :return display of the user interface:

load_variables(variables: fastoad.openmdao.variables.variable_list.VariableList, attribute_to_column:
Optional[Dict[str, str]] = None)

Loads provided variable list and replace current data set.

Parameters
• variables – the variables to load

• attribute_to_column – dictionary keys tell what variable attributes are kept and
the values tell what name will be displayed. If not provided, default translation will
apply.

get_variables(column_to_attribute: Optional[Dict[str, str]] = None)→
fastoad.openmdao.variables.variable_list.VariableList

Parameters column_to_attribute – dictionary keys tell what columns are kept and the
values tell what variable attribute it corresponds to. If not provided, default translation
will apply.

Returns a variable list from current data set

Module contents

fastoad.io package

Subpackages

fastoad.io.configuration package

Subpackages

Submodules

fastoad.io.configuration.configuration module

Module for building OpenMDAO problem from configuration file

class fastoad.io.configuration.configuration.FASTOADProblemConfigurator(conf_file_path=None)
Bases: object

class for configuring an OpenMDAO problem from a configuration file

See description of configuration file.

Parameters conf_file_path – if provided, configuration will be read directly from it

property input_file_path
path of file with input variables of the problem

1.6. fastoad 89

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

property output_file_path
path of file where output variables will be written

get_problem(read_inputs: bool = False, auto_scaling: bool = False)→
fastoad.openmdao.problem.FASTOADProblem

Builds the OpenMDAO problem from current configuration.

Parameters
• read_inputs – if True, the created problem will already be fed with variables from

the input file

• auto_scaling – if True, automatic scaling is performed for design variables and
constraints

Returns the problem instance

load(conf_file)
Reads the problem definition

Parameters conf_file – Path to the file to open or a file descriptor

save(filename: Optional[str] = None)
Saves the current configuration If no filename is provided, the initially read file is used.

Parameters filename – file where to save configuration

write_needed_inputs(source_file_path: Optional[str] = None, source_formatter:
Optional[fastoad.io.formatter.IVariableIOFormatter] = None)

Writes the input file of the problem with unconnected inputs of the configured problem.

Written value of each variable will be taken:

1. from input_data if it contains the variable

2. from defined default values in component definitions

Parameters
• source_file_path – if provided, variable values will be read from it

• source_formatter – the class that defines format of input file. if not provided, ex-
pected format will be the default one.

get_optimization_definition()→ Dict

Returns information related to the optimization problem:
• Design Variables

• Constraints

• Objectives

Returns dict containing optimization settings for current problem

set_optimization_definition(optimization_definition: Dict)
Updates configuration with the list of design variables, constraints, objectives contained in the optimiza-
tion_definition dictionary.

Keys of the dictionary are: “design_var”, “constraint”, “objective”.

Configuration file will not be modified until save() is used.

90 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

Parameters optimization_definition – dict containing the optimization problem defini-
tion

fastoad.io.configuration.exceptions module

Exceptions for package configuration

exception fastoad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError(original_exception:
Excep-
tion,
key:
str,
value=None)

Bases: fastoad.exceptions.FastError

Class for being raised from bottom to top of TOML dict so that in the end, the message provides the full qualified
name of the problematic key.

using new_err = FASTConfigurationBaseKeyBuildingError(err, ‘new_err_key’, <value>):

• if err is a FASTConfigurationBaseKeyBuildingError instance with err.key==’err_key’:
– new_err.key will be ‘new_err_key.err_key’

– new_err.value will be err.value (no need to provide a value here)

– new_err.original_exception will be err.original_exception

• otherwise, new_err.key will be ‘new_err_key’ and new_err.value will be <value>
– new_err.key will be ‘new_err_key’

– new_err.value will be <value>

– new_err.original_exception will be err

Parameters
• original_exception – the error that happened for raising this one

• key – the current key

• value – the current value

Constructor

key
the “qualified key” (like “problem.group.component1”) related to error, build through raising up the error

value
the value related to error

original_exception
the original error, when eval failed

1.6. fastoad 91

https://docs.python.org/3.9/library/exceptions.html#Exception
https://docs.python.org/3.9/library/exceptions.html#Exception
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

exception fastoad.io.configuration.exceptions.FASTConfigurationBadOpenMDAOInstructionError(original_exception:
Ex-
cep-
tion,
key:
str,
value=None)

Bases: fastoad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError

Class for managing errors that result from trying to set an attribute by eval.

Constructor

Module contents

Package for building OpenMDAO problem from configuration file

fastoad.io.xml package

Subpackages

Submodules

fastoad.io.xml.constants module

Constants for the XML module

fastoad.io.xml.constants.DEFAULT_UNIT_ATTRIBUTE = 'units'
label of tag attribute for providing units as a string

fastoad.io.xml.constants.DEFAULT_IO_ATTRIBUTE = 'is_input'
label of tag attribute for providing io variable type as boolean

fastoad.io.xml.constants.ROOT_TAG = 'FASTOAD_model'
name of root element for XML files

fastoad.io.xml.exceptions module

Exceptions for io.xml module

exception fastoad.io.xml.exceptions.FastXPathEvalError
Bases: fastoad.exceptions.FastError

Raised when some xpath could not be resolved

exception fastoad.io.xml.exceptions.FastXpathTranslatorInconsistentLists
Bases: fastoad.exceptions.FastError

Raised when list of variable names and list of XPaths have not the same length

exception fastoad.io.xml.exceptions.FastXpathTranslatorDuplicates
Bases: fastoad.exceptions.FastError

Raised when list of variable names or list of XPaths have duplicate entries

92 Chapter 1. Contents

https://docs.python.org/3.9/library/exceptions.html#Exception
https://docs.python.org/3.9/library/exceptions.html#Exception
https://docs.python.org/3.9/library/exceptions.html#Exception
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

exception fastoad.io.xml.exceptions.FastXpathTranslatorVariableError(variable)
Bases: fastoad.exceptions.FastError

Raised when a variable does not match any xpath in the translator file.

exception fastoad.io.xml.exceptions.FastXpathTranslatorXPathError(xpath)
Bases: fastoad.exceptions.FastError

Raised when a xpath does not match any variable in the translator file.

exception fastoad.io.xml.exceptions.FastXmlFormatterDuplicateVariableError
Bases: fastoad.exceptions.FastError

Raised a variable is defined more than once in a XML file

fastoad.io.xml.translator module

Conversion from OpenMDAO variables to XPath

class fastoad.io.xml.translator.VarXpathTranslator(*, variable_names: Optional[Sequence[str]] =
None, xpaths: Optional[Sequence[str]] = None,
source: Optional[Union[IO, str]] = None)

Bases: object

Allows to convert OpenMDAO variable names from and to XPath, using a provided conversion table.

At instantiation, user can provide (as keyword arguments only):
• variable_names and xpaths (see set())

• translation file (see read_translation_table())

set(variable_names: Sequence[str], xpaths: Sequence[str])
Sets the “conversion table”, i.e. two lists where each element matches the other with same index. Provided
lists must have the same length.

Parameters
• variable_names – List of OpenMDAO variable names

• xpaths – List of XML Paths

read_translation_table(source: Union[str, IO])
Reads a file that sets how OpenMDAO variable are matched to XML Path. Provided file should have 2
comma-separated columns:

• first one with OpenMDAO names

• second one with their matching XPath

Parameters source –

property variable_names: Sequence[str]
List of variable names as set in set()

property xpaths: Sequence[str]
List of XPaths as set in set()

get_xpath(var_name: str)→ str

Parameters var_name – OpenMDAO variable name

1.6. fastoad 93

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

Returns XPath that matches var_name

Raises FastXpathTranslatorVariableError – if var_name is unknown

get_variable_name(xpath: str)→ str

Parameters xpath – XML Path

Returns OpenMDAO variable name that matches xpath

Raises FastXpathTranslatorXPathError – if xpath is unknown

fastoad.io.xml.variable_io_base module

Defines how OpenMDAO variables are serialized to XML using a conversion table

class fastoad.io.xml.variable_io_base.VariableXmlBaseFormatter(translator: fas-
toad.io.xml.translator.VarXpathTranslator)

Bases: fastoad.io.formatter.IVariableIOFormatter

Customizable formatter for variables

User must provide at instantiation a VarXpathTranslator instance that tells how variable names should be con-
verted from/to XPath.

Note: XPath are always considered relatively to the root. Therefore, “foo/bar” should be provided to match
following XML structure:

<root>
<foo>

<bar>
"some value"

</bar>
</foo>

</root>

Parameters translator – the VarXpathTranslator instance

xml_unit_attribute
The XML attribute key for specifying units

xml_io_attribute
The XML attribute key for specifying I/O status

read_variables(data_source: Union[str, IO])→ fastoad.openmdao.variables.variable_list.VariableList
Reads variables from provided data source file.

Parameters data_source –

Returns a list of Variable instance

write_variables(data_source: Union[str, IO], variables:
fastoad.openmdao.variables.variable_list.VariableList)

Writes variables to defined data source file.

Parameters
• data_source –

• variables –

94 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.io.xml.variable_io_legacy module

Readers for legacy XML format

class fastoad.io.xml.variable_io_legacy.VariableLegacy1XmlFormatter
Bases: fastoad.io.xml.variable_io_base.VariableXmlBaseFormatter

Formatter for legacy XML format (version “1”)

fastoad.io.xml.variable_io_standard module

Defines how OpenMDAO variables are serialized to XML

class fastoad.io.xml.variable_io_standard.VariableXmlStandardFormatter
Bases: fastoad.io.xml.variable_io_base.VariableXmlBaseFormatter

Standard XML formatter for variables

Assuming self.path_separator is defined as : (default), a variable named like foo:bar with units m/s will be
read and written as:

<aircraft>
<foo>

<bar units="m/s" >`42.0</bar>
</foo>

<aircraft>

When writing outputs of a model, OpenMDAO component hierarchy may be used by defining

self.path_separator = '.' # Discouraged for reading !
self.use_promoted_names = False

This way, a variable like componentA.subcomponent2.my_var will be written as:

<aircraft>
<componentA>

<subcomponent2>
<my_var units="m/s" >72.0</my_var>

</subcomponent2>
<componentA>

<aircraft>

property path_separator
The separator that will be used in OpenMDAO variable names to match XML path. Warning: The dot “.”
can be used when writing, but not when reading.

read_variables(data_source: Union[str, IO])→ fastoad.openmdao.variables.variable_list.VariableList
Reads variables from provided data source file.

Parameters data_source –

Returns a list of Variable instance

write_variables(data_source: Union[str, IO], variables:
fastoad.openmdao.variables.variable_list.VariableList)

Writes variables to defined data source file.

Parameters

1.6. fastoad 95

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

• data_source –

• variables –

class fastoad.io.xml.variable_io_standard.BasicVarXpathTranslator(path_separator)
Bases: fastoad.io.xml.translator.VarXpathTranslator

Dedicated VarXpathTranslator that builds variable names by simply converting the ‘/’ separator of XPaths into
the desired separator.

get_variable_name(xpath: str)→ str

Parameters xpath – XML Path

Returns OpenMDAO variable name that matches xpath

Raises FastXpathTranslatorXPathError – if xpath is unknown

get_xpath(var_name: str)→ str

Parameters var_name – OpenMDAO variable name

Returns XPath that matches var_name

Raises FastXpathTranslatorVariableError – if var_name is unknown

Module contents

Package for handling XML files

Submodules

fastoad.io.formatter module

class fastoad.io.formatter.IVariableIOFormatter
Bases: abc.ABC

Interface for formatter classes to be used in VariableIO class.

The file format is defined by the implementation of this interface.

abstract read_variables(data_source: Union[str, IO])→
fastoad.openmdao.variables.variable_list.VariableList

Reads variables from provided data source file.

Parameters data_source –

Returns a list of Variable instance

abstract write_variables(data_source: Union[str, IO], variables:
fastoad.openmdao.variables.variable_list.VariableList)

Writes variables to defined data source file.

Parameters
• data_source –

• variables –

96 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

fastoad.io.variable_io module

class fastoad.io.variable_io.VariableIO(data_source: Union[str, IO], formatter:
Optional[fastoad.io.formatter.IVariableIOFormatter] = None)

Bases: object

Class for reading and writing variable values from/to file.

The file format is defined by the class provided as formatter argument.

Parameters
• data_source – the I/O stream, or a file path, used for reading or writing data

• formatter – a class that determines the file format to be used. Defaults to a VariableBa-
sicXmlFormatter instance.

read(only: Optional[List[str]] = None, ignore: Optional[List[str]] = None)→
fastoad.openmdao.variables.variable_list.VariableList
Reads variables from provided data source.

Elements of only and ignore can be real variable names or Unix-shell-style patterns. In any case, compar-
ison is case-sensitive.

Parameters
• only – List of variable names that should be read. Other names will be ignored. If

None, all variables will be read.

• ignore – List of variable names that should be ignored when reading.

Returns an VariableList instance where outputs have been defined using provided source

write(variables: fastoad.openmdao.variables.variable_list.VariableList, only: Optional[List[str]] = None,
ignore: Optional[List[str]] = None)

Writes variables from provided VariableList instance.

Elements of only and ignore can be real variable names or Unix-shell-style patterns. In any case, compar-
ison is case-sensitive.

Parameters
• variables – a VariableList instance

• only – List of variable names that should be written. Other names will be ignored. If
None, all variables will be written.

• ignore – List of variable names that should be ignored when writing

class fastoad.io.variable_io.DataFile(data_source: Optional[Union[str, IO, list]] = None, formatter:
Optional[fastoad.io.formatter.IVariableIOFormatter] = None,
load_data=True)

Bases: fastoad.openmdao.variables.variable_list.VariableList

Class for managing FAST-OAD data files.

Behaves like VariableList class but has load() and save() methods.

If variable list is specified for data_source, file_path will have to be set before using :method:`save`.
Parameters

• data_source – Can be the file path where data will be loaded and saved, or a list of
Variable instances that will be used for initialization (or a VariableList instance).

1.6. fastoad 97

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#list

FAST-OAD, Release unknown

• formatter – (ignored if data_source is not an I/O stream nor a file path) a class that deter-
mines the file format to be used. Defaults to FAST-OAD native format. See VariableIO
for more information.

• load_data – (ignored if data_source is not an I/O stream nor a file path) if True, file is
expected to exist and its content will be loaded at instantiation.

property file_path: str
Path of data file.

property formatter: fastoad.io.formatter.IVariableIOFormatter
Class that defines the file format.

load()
Loads file content.

save()
Saves current state of variables in file.

save_as(file_path: str, overwrite=False, formatter: Optional[fastoad.io.formatter.IVariableIOFormatter] =
None)

Sets the associated file path as specified and saves current state of variables.

Parameters
• file_path –

• overwrite – if specified file already exists and overwrite is False, an error is triggered.

• formatter – a class that determines the file format to be used. Defaults to FAST-OAD
native format. See VariableIO for more information.

Module contents

Package for handling input/output streams

fastoad.model_base package

Subpackages

Submodules

fastoad.model_base.atmosphere module

Simple implementation of International Standard Atmosphere.

class fastoad.model_base.atmosphere.Atmosphere(*args, **kwargs)
Bases: object

Simple implementation of International Standard Atmosphere for troposphere and stratosphere.

Atmosphere properties are provided in the same “shape” as provided altitude:

• if altitude is given as a float, returned values will be floats

• if altitude is given as a sequence (list, 1D numpy array, . . .), returned values will be 1D numpy arrays

• if altitude is given as nD numpy array, returned values will be nD numpy arrays

98 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

Usage:

>>> pressure = Atmosphere(30000).pressure # pressure at 30,000 feet, dISA = 0 K
>>> density = Atmosphere(5000, 10).density # density at 5,000 feet, dISA = 10 K

>>> atm = Atmosphere(np.arange(0,10001,1000, 15)) # init for alt. 0 to 10,000, dISA␣
→˓= 15K
>>> temperatures = atm.pressure # pressures for all defined altitudes
>>> viscosities = atm.kinematic_viscosity # viscosities for all defined altitudes

Parameters
• altitude – altitude (units decided by altitude_in_feet)

• delta_t – temperature increment (°C) applied to whole temperature profile

• altitude_in_feet – if True, altitude should be provided in feet. Otherwise, it should
be provided in meters.

get_altitude(altitude_in_feet: bool = True)→ Union[float, Sequence[float]]

Parameters altitude_in_feet – if True, altitude is returned in feet. Otherwise, it is re-
turned in meters

Returns altitude provided at instantiation

property delta_t: Union[float, Sequence[float]]
Temperature increment applied to whole temperature profile.

property temperature: Union[float, Sequence[float]]
Temperature in K.

property pressure: Union[float, Sequence[float]]
Pressure in Pa.

property density: Union[float, Sequence[float]]
Density in kg/m3.

property speed_of_sound: Union[float, Sequence[float]]
Speed of sound in m/s.

property kinematic_viscosity: Union[float, Sequence[float]]
Kinematic viscosity in m2/s.

property mach: Union[float, Sequence[float]]
Mach number.

property true_airspeed: Union[float, Sequence[float]]
True airspeed (TAS) in m/s.

property equivalent_airspeed: Union[float, Sequence[float]]
Equivalent airspeed (EAS) in m/s.

property unitary_reynolds: Union[float, Sequence[float]]
Unitary Reynolds number in 1/m.

class fastoad.model_base.atmosphere.AtmosphereSI(*args, **kwargs)
Bases: fastoad.model_base.atmosphere.Atmosphere

Same as Atmosphere except that altitudes are always in meters.

1.6. fastoad 99

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

Parameters
• altitude – altitude in meters

• delta_t – temperature increment (°C) applied to whole temperature profile

property altitude
Altitude in meters.

fastoad.model_base.datacls module

Dataclass utilities.

fastoad.model_base.datacls.MANDATORY_FIELD = <object object>
To be put as default value for dataclass fields that should not have a default value. See BaseDataClass for
further information.

class fastoad.model_base.datacls.BaseDataClass
Bases: object

This class is a workaround for the following dataclass problem:

If a dataclass defines a field with a default value, inheritor classes will not be allowed to define
fields without default value, because then the non-default fields will follow a default field, which is
forbidden.

The chosen solution (from https://stackoverflow.com/a/53085935/16488238) is to always define default values,
but mandatory fields will have the MANDATORY_FIELD object as default.

After initialization, __post_init__() will process fields and raise an error if a field has MANDATORY_FIELD
as value.

fastoad.model_base.flight_point module

Structure for managing flight point data.

class fastoad.model_base.flight_point.FlightPoint(time: float = 0.0, altitude: Optional[float] = None,
isa_offset: float = 0.0, ground_distance: float =
0.0, mass: Optional[float] = None, consumed_fuel:
float = 0.0, true_airspeed: Optional[float] = None,
equivalent_airspeed: Optional[float] = None,
mach: Optional[float] = None, engine_setting:
Optional[fastoad.constants.EngineSetting] = None,
CL: Optional[float] = None, CD: Optional[float] =
None, lift: Optional[float] = None, drag:
Optional[float] = None, thrust: Optional[float] =
None, thrust_rate: Optional[float] = None,
thrust_is_regulated: Optional[bool] = None, sfc:
Optional[float] = None, slope_angle:
Optional[float] = None, acceleration:
Optional[float] = None, alpha: float = 0.0,
slope_angle_derivative: Optional[float] = None,
name: Optional[str] = None)

Bases: object

Dataclass for storing data for one flight point.

This class is meant for:

100 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#object
https://stackoverflow.com/a/53085935/16488238
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

• pandas friendliness: data exchange with pandas DataFrames is simple

• extensibility: any user might add fields to the class using add_field()

Exchanges with pandas DataFrame
A pandas DataFrame can be generated from a list of FlightPoint instances:

>>> import pandas as pd
>>> from fastoad.model_base import FlightPoint

>>> fp1 = FlightPoint(mass=70000., altitude=0.)
>>> fp2 = FlightPoint(mass=60000., altitude=10000.)
>>> df = pd.DataFrame([fp1, fp2])

And FlightPoint instances can be created from DataFrame rows:

Get one FlightPoint instance from a DataFrame row
>>> fp1bis = FlightPoint.create(df.iloc[0])

Get a list of FlightPoint instances from the whole DataFrame
>>> flight_points = FlightPoint.create_list(df)

Extensibility
FlightPoint class is bundled with several fields that are commonly used in trajectory assessment, but
one might need additional fields.

Python allows to add attributes to any instance at runtime, but for FlightPoint to run smoothly, es-
pecially when exchanging data with pandas, you have to work at class level. This can be done using
add_field(), preferably outside of any class or function:

Adds a float field with None as default value
>>> FlightPoint.add_field("ion_drive_power")

Adds a field and define its type and default value
>>> FlightPoint.add_field("warp", annotation_type=int, default_value=9)

Now these fields can be used at instantiation
>>> fp = FlightPoint(ion_drive_power=110.0, warp=12)

Removes a field, even an original one (useful only to avoid having it in␣
→˓outputs)
>>> FlightPoint.remove_field("sfc")

Note: All parameters in FlightPoint instances are expected to be in SI units.

time: float = 0.0
Time in seconds.

altitude: float = None
Altitude in meters.

isa_offset: float = 0.0
temperature deviation from Standard Atmosphere

1.6. fastoad 101

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

ground_distance: float = 0.0
Covered ground distance in meters.

mass: float = None
Mass in kg.

consumed_fuel: float = 0.0
Consumed fuel since mission start, in kg.

true_airspeed: float = None
True airspeed (TAS) in m/s.

equivalent_airspeed: float = None
Equivalent airspeed (EAS) in m/s.

mach: float = None
Mach number.

engine_setting: fastoad.constants.EngineSetting = None
Engine setting.

CL: float = None
Lift coefficient.

CD: float = None
Drag coefficient.

lift: float = None
Aircraft lift in Newtons

drag: float = None
Aircraft drag in Newtons.

thrust: float = None
Thrust in Newtons.

thrust_rate: float = None
Thrust rate (between 0. and 1.)

thrust_is_regulated: bool = None
If True, propulsion should match the thrust value. If False, propulsion should match thrust rate.

sfc: float = None
Specific Fuel Consumption in kg/N/s.

slope_angle: float = None
Slope angle in radians.

acceleration: float = None
Acceleration value in m/s**2.

alpha: float = 0.0
angle of attack in radians

slope_angle_derivative: float = None
slope angle derivative in rad/s

name: str = None
Name of current phase.

set_as_relative(field_names: Union[Sequence[str], str])
Makes that values for given field_names will be considered as relative when calling make_absolute().

Parameters field_names –

102 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

set_as_absolute(field_names: Union[Sequence[str], str])
Makes that values for given field_names will be considered as absolute when calling make_absolute().

Parameters field_names –

is_relative(field_name)→ bool
Tells if given field is considered as relative or absolut

Parameters field_name –

Returns True if it is relative

make_absolute(reference_point: fastoad.model_base.flight_point.FlightPoint)→
fastoad.model_base.flight_point.FlightPoint

Computes a copy flight point where no field is relative.

Parameters reference_point – relative fields will be made absolute using this point.

Returns the copied flight point with no relative field.

classmethod get_field_names()

Returns names of all fields of the flight point.

classmethod get_units()→ dict
Returns (field name, unit) dict for any field that has a defined unit.

A dimensionless physical quantity will have “-” as unit.

classmethod create(data: Mapping)→ fastoad.model_base.flight_point.FlightPoint
Instantiate FlightPoint from provided data.

data can typically be a dict or a pandas DataFrame row.

Parameters data – a dict-like instance where keys are FlightPoint attribute names

Returns the created FlightPoint instance

classmethod create_list(data: pandas.core.frame.DataFrame)→
List[fastoad.model_base.flight_point.FlightPoint]

Creates a list of FlightPoint instances from provided DataFrame.

Parameters data – a dict-like instance where keys are FlightPoint attribute names

Returns the created FlightPoint instance

classmethod add_field(name: str, annotation_type=<class 'float'>, default_value: Optional[Any] =
None, unit=None)

Adds the named field to FlightPoint class.

If the field name already exists, the field is redefined.

Parameters
• name – field name

• annotation_type – field type

• default_value – field default value

• unit – expected unit for the added field (“-” should be provided for a dimensionless
physical quantity)

classmethod remove_field(name)
Removes the named field from FlightPoint class.

1.6. fastoad 103

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

Parameters name – field name

scalarize()
Convenience method for converting to scalars all fields that have a one-item array-like value.

fastoad.model_base.propulsion module

Base classes for propulsion components.

class fastoad.model_base.propulsion.IPropulsion
Bases: abc.ABC

Interface that should be implemented by propulsion models.

Using this class allows to delegate to the propulsion model the management of propulsion-related data when
computing performances.

The performance model calls compute_flight_points() by providing one or several flight points. The
method will feed these flight points with results of the model (e.g. thrust, SFC, ..).

The performance model will then be able to call get_consumed_mass() to know the mass consumption for
each flight point.

Note:

If the propulsion model needs fields that are not among defined fields
of the :class`FlightPoint class`, these fields can be made authorized by
:class`FlightPoint class`. Please see part about extensibility in
:class`FlightPoint class` documentation.

abstract compute_flight_points(flight_points: Union[fastoad.model_base.flight_point.FlightPoint,
pandas.core.frame.DataFrame])

Computes Specific Fuel Consumption according to provided conditions.

See FlightPoint for available fields that may be used for computation. If a DataFrame instance is pro-
vided, it is expected that its columns match field names of FlightPoint (actually, the DataFrame instance
should be generated from a list of FlightPoint instances).

Note: About thrust_is_regulated, thrust_rate and thrust
thrust_is_regulated tells if a flight point should be computed using thrust_rate (when False) or
thrust (when True) as input. This way, the method can be used in a vectorized mode, where each point
can be set to respect a thrust order or a thrust rate order.

• if thrust_is_regulated is not defined, the considered input will be the defined one between
thrust_rate and thrust (if both are provided, thrust_rate will be used)

• if thrust_is_regulated is True or False (i.e., not a sequence), the considered input will be taken
accordingly, and should of course be defined.

• if there are several flight points, thrust_is_regulated is a sequence or array, thrust_rate
and thrust should be provided and have the same shape as thrust_is_regulated:code:.
The method will consider for each element which input will be used according to
thrust_is_regulated.

Parameters flight_points – FlightPoint or DataFram instance

Returns None (inputs are updated in-place)

104 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

abstract get_consumed_mass(flight_point: fastoad.model_base.flight_point.FlightPoint, time_step: float)
→ float

Computes consumed mass for provided flight point and time step.

This method should rely on FlightPoint fields that are generated by :meth: compute_flight_points.

Parameters
• flight_point –

• time_step –

Returns the consumed mass in kg

class fastoad.model_base.propulsion.IOMPropulsionWrapper
Bases: object

Interface for wrapping a IPropulsion subclass in OpenMDAO.

The implementation class defines the needed input variables for instantiating the IPropulsion subclass in
setup() and use them for instantiation in get_model()

See OMRubberEngineWrapper for an example of implementation.

abstract setup(component: openmdao.core.component.Component)
Defines the needed OpenMDAO inputs for propulsion instantiation as done in get_model()

Use add_inputs and declare_partials methods of the provided component

Parameters component –

abstract static get_model(inputs)→ fastoad.model_base.propulsion.IPropulsion
This method defines the used IPropulsion subclass instance.

Parameters inputs – OpenMDAO input vector where the parameters that define the propul-
sion model are

Returns the propulsion model instance

class fastoad.model_base.propulsion.BaseOMPropulsionComponent(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent, abc.ABC

Base class for creating an OpenMDAO component from subclasses of IOMPropulsionWrapper.

Classes that implements this interface should add their own inputs in setup() and implement get_wrapper().

Store some bound methods so we can detect runtime overrides.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
• inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

• outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

1.6. fastoad 105

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/abc.html#abc.ABC

FAST-OAD, Release unknown

• discrete_inputs (dict or None) – If not None, dict containing discrete input
values.

• discrete_outputs (dict or None) – If not None, dict containing discrete output
values.

abstract static get_wrapper()→ fastoad.model_base.propulsion.IOMPropulsionWrapper
This method defines the used IOMPropulsionWrapper instance.

Returns an instance of OpenMDAO wrapper for propulsion model

class fastoad.model_base.propulsion.AbstractFuelPropulsion
Bases: fastoad.model_base.propulsion.IPropulsion, abc.ABC

Propulsion model that consume any fuel should inherit from this one.

In inheritors, compute_flight_points() is expected to define “sfc” and “thrust” in computed FlightPoint
instances.

get_consumed_mass(flight_point: fastoad.model_base.flight_point.FlightPoint, time_step: float)→ float
Computes consumed mass for provided flight point and time step.

This method should rely on FlightPoint fields that are generated by :meth: compute_flight_points.

Parameters
• flight_point –

• time_step –

Returns the consumed mass in kg

class fastoad.model_base.propulsion.FuelEngineSet(engine:
fastoad.model_base.propulsion.IPropulsion,
engine_count)

Bases: fastoad.model_base.propulsion.AbstractFuelPropulsion

Class for modelling an assembly of identical fuel engines.

Thrust is supposed equally distributed among them.

Parameters
• engine – the engine model

• engine_count –

compute_flight_points(flight_points: Union[fastoad.model_base.flight_point.FlightPoint,
pandas.core.frame.DataFrame])

Computes Specific Fuel Consumption according to provided conditions.

See FlightPoint for available fields that may be used for computation. If a DataFrame instance is pro-
vided, it is expected that its columns match field names of FlightPoint (actually, the DataFrame instance
should be generated from a list of FlightPoint instances).

Note: About thrust_is_regulated, thrust_rate and thrust
thrust_is_regulated tells if a flight point should be computed using thrust_rate (when False) or
thrust (when True) as input. This way, the method can be used in a vectorized mode, where each point
can be set to respect a thrust order or a thrust rate order.

• if thrust_is_regulated is not defined, the considered input will be the defined one between
thrust_rate and thrust (if both are provided, thrust_rate will be used)

106 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

• if thrust_is_regulated is True or False (i.e., not a sequence), the considered input will be taken
accordingly, and should of course be defined.

• if there are several flight points, thrust_is_regulated is a sequence or array, thrust_rate
and thrust should be provided and have the same shape as thrust_is_regulated:code:.
The method will consider for each element which input will be used according to
thrust_is_regulated.

Parameters flight_points – FlightPoint or DataFram instance

Returns None (inputs are updated in-place)

Module contents

Base features for FAST-OAD models

fastoad.models package

Subpackages

fastoad.models.performances package

Subpackages

fastoad.models.performances.mission package

Subpackages

fastoad.models.performances.mission.mission_definition package

Subpackages

fastoad.models.performances.mission.mission_definition.mission_builder package

Subpackages

Submodules

fastoad.models.performances.mission.mission_definition.mission_builder.constants module

Constants for mission builder package.

1.6. fastoad 107

FAST-OAD, Release unknown

fastoad.models.performances.mission.mission_definition.mission_builder.input_definition module

Management of mission input definitions.

108 Chapter 1. Contents

FAST-OAD, Release unknown

class fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition(parameter_name:
str,
in-
put_value:
Op-
tional[Union[numbers.Number,
It-
er-
able,
str]],
in-
put_unit:
Op-
tional[str]
=
None,
de-
fault_value:
num-
bers.Number
=
nan,
is_relative:
bool
=
False,
part_identifier:
str
=
'',
shape:
Op-
tional[Tuple[int]]
=
None,
shape_by_conn:
bool
=
False,
pre-
fix:
str
=
'',
vari-
able_name:
dat-
a-
classes.InitVar[typing.Optional[str]]
=
<prop-
erty
ob-
ject>,
use_opposite:
dat-
a-
classes.InitVar[typing.Optional[bool]]
=
None)

Bases: object

1.6. fastoad 109

https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

Class for managing definition of mission inputs.

It stores and processes input definition from mission files:
• provides values to be used for mission computation (management of units and variables)

• provides information for OpenMDAO declaration

parameter_name: str
The parameter this input is defined for.

input_value: Optional[Union[numbers.Number, Iterable, str]]
Value, matching input_unit. At instantiation, it can also be the variable name.

input_unit: Optional[str] = None
Unit used for self.input_value.

default_value: numbers.Number = nan
Default value. Used if value is a variable name.

is_relative: bool = False
True if variable is defined as relative.

part_identifier: str = ''
Prefix used when generating variable name because “~” was used in variable name input.

output_unit: Optional[str] = None
Unit used for self.value. Automatically determined from self.parameter_name, mainly from unit definition
for FlightPoint class.

shape: Optional[Tuple[int]] = None
Value of the “shape” openMDAO flag for input declaration.

shape_by_conn: bool = False
Value of the “shape_by_conn” openMDAO flag for input declaration.

prefix: str = ''
Prefix used when replacement of “~” is needed.

use_opposite: dataclasses.InitVar[typing.Optional[bool]] = None
Used only for tests

property value
Value of variable in DEFAULT unit (unit used by mission calculation), or None if input is a variable and
set_variable_input() has NOT been called, or the unchanged value if it is not a number.

Type return

classmethod from_dict(parameter_name, definition_dict: dict, part_identifier=None, prefix=None)
Instantiates InputDefinition from definition_dict.

definition_dict[“value”] is used as input_value in instantiation. It can be an actual value or a variable name.

Parameters
• parameter_name – used if definition_dict[“value”] == “~” (or “-~”)

• definition_dict – dict with keys (“value”, “unit”, “default”). “unit” and “default”
are optional.

• part_identifier – used if “~” is in definition_dict[“value”]

• prefix – used if “~” is in definition_dict[“value”]

110 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/numbers.html#numbers.Number
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/numbers.html#numbers.Number
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

set_variable_value(inputs: Mapping)
Sets numerical value from OpenMDAO inputs.

OpenMDAO value is assumed to be provided with unit self.input_unit.

Parameters inputs –

get_input_definition()→ Optional[fastoad.openmdao.variables.variable.Variable]
Provides information for input definition in OpenMDAO.

Returns Variable instance with input definition, or None if no variable name was defined.

property variable_name
Used only for tests

fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder mod-
ule

Mission generator.

class fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder(mission_definition:
Union[str,
fas-
toad.models.performances.mission.mission_definition.schema.MissionDefinition],
*,
propul-
sion:
Op-
tional[fastoad.model_base.propulsion.IPropulsion]
=
None,
ref-
er-
ence_area:
Op-
tional[float]
=
None,
mis-
sion_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'data:mission')

Bases: object

This class builds and computes a mission from a provided definition.

Parameters
• mission_definition – a file path or MissionDefinition instance

1.6. fastoad 111

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

• propulsion – if not provided, the property propulsion must be set before calling
build()

• reference_area – if not provided, the property reference_area must be set before
calling build()

• mission_name – name of chosen mission, if already decided.

• variable_prefix – prefix for auto-generated variable names.

property definition:
fastoad.models.performances.mission.mission_definition.schema.MissionDefinition

The definition of missions as provided in input file.

property propulsion: fastoad.model_base.propulsion.IPropulsion
Propulsion model for performance computation.

property reference_area: float
Reference area for aerodynamic polar.

property mission_name
The mission name, in case it has been specified, or if it is unique in the file.

property variable_prefix
The prefix for auto-generated variable names.

build(inputs: Optional[Mapping] = None, mission_name: Optional[str] = None)→
fastoad.models.performances.mission.mission.Mission

Builds the flight sequence from definition file.

Parameters
• inputs – if provided, any input parameter that is a string which matches a key of

inputs will be replaced by the corresponding value

• mission_name – mission name (can be omitted if only one mission is defined or if
mission has been defined)

Returns
get_route_names(mission_name: Optional[str] = None)→ List[str]

Parameters mission_name –

Returns a list with names of all routes in the mission, in order.

get_route_ranges(inputs: Optional[Mapping] = None, mission_name: Optional[str] = None)→
List[float]

Parameters
• inputs – if provided, any input parameter that is a string which matches a key of

inputs will be replaced by the corresponding value

• mission_name – mission name (can be omitted if only one mission is defined or if
mission has been defined)

Returns list of flight ranges for each element of the flight sequence that is a route

get_reserve(flight_points: pandas.core.frame.DataFrame, mission_name: Optional[str] = None)→ float
Computes the reserve fuel according to definition in mission input file.

Parameters

112 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

• flight_points – the dataframe returned by compute_from() method of the instance
returned by build()

• mission_name – mission name (can be omitted if only one mission is defined or if
mission has been defined)

Returns the reserve fuel mass in kg, or 0.0 if no reserve is defined.

get_input_variables(mission_name=None)→ fastoad.openmdao.variables.variable_list.VariableList
Identify variables for a defined mission.

Parameters mission_name – mission name (can be omitted if only one mission is defined or
if mission has been defined)

Returns a VariableList instance.

get_unique_mission_name()→ str
Provides mission name if only one mission is defined in mission file.

Returns the mission name, if only one mission is defined

Raises FastMissionFileMissingMissionNameError – if several missions are defined in
mission file

get_input_weight_variable_name(mission_name: Optional[str] = None)→ Optional[str]
Search the mission structure for a segment that has a target absolute mass defined and returns the associated
variable name.

Parameters mission_name – mission name (can be omitted if only one mission is defined or
if mission has been defined)

Returns The variable name, or None if no target mass found.

fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders
module

Classes for managing internal structures of missions.

The mission file provides a “human” definition of the mission. Structures are the translation of this human definition,
that is ready to be transformed into a Python implementation.

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: abc.ABC

1.6. fastoad 113

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/abc.html#abc.ABC

FAST-OAD, Release unknown

Base class for building structures of mission parts.

“Structures” are dicts that are derived from the mission definition file so that they can be readily translated into
the matching implementation.

Usage:

Subclasses must implement the build method that will create the specific part of the structure dict (name and
type fields are automated).

If the structure has to contain the result of another result, insert_builder() should be used to ensure a correct
processing of the global structure, especially to get a correct resolution of input_definitions.

definition: dataclasses.InitVar[dict]

name: str

parent_name: str = None

variable_prefix: str = ''

type = None
Defined by subclass

property structure: dict
A dictionary that is ready to be translated to the matching implementation.

get_input_definitions()→
List[fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition]

List of InputDefinition instances in the structure.

process_builder(builder: fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder)
→ dict

Method to be used when another StructureBuilder object should be inserted in structure.

Not using this method will prevent a correct processing of input_definitions.

Note: The returned object is always an empty dict. It is actually a memory reference that will allow to fill
this “placeholder” later with the final result of the builder, that cannot be completely known when builder
is created from read definition.

Parameters builder – the builder object

Returns the object that has to be put at location where the builder result should be used

property qualified_name
).

Type Name of the current structure, preceded by the parent names, separated by colons (

114 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.DefaultStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
structure_builders.AbstractStructureBuilder

Builder for structures that do not need to process the given definition.

Parameters definition – the definition for the part only

type = None
Defined by subclass

definition: dataclasses.InitVar[dict]

name: str

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PolarStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
structure_builders.AbstractStructureBuilder

Structure builder for polar definition.

Parameters definition – the definition for the polar only

type = 'polar'
Defined by subclass

definition: dataclasses.InitVar[dict]

1.6. fastoad 115

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

name: str

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.SegmentStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
structure_builders.AbstractStructureBuilder

Structure builder for segment definition.

Parameters definition – the definition for the segment only

type = 'segment'
Defined by subclass

definition: dataclasses.InitVar[dict]

name: str

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PhaseStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
structure_builders.AbstractStructureBuilder

Structure builder for phase definition.

Parameters definition – the whole content of definition file

type = 'phase'
Defined by subclass

116 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

definition: dataclasses.InitVar[dict]

name: str

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.RouteStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
structure_builders.AbstractStructureBuilder

Structure builder for route definition.

Parameters definition – the whole content of definition file

type = 'route'
Defined by subclass

definition: dataclasses.InitVar[dict]

name: str

class fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.MissionStructureBuilder(definition:
dat-
a-
classes.InitVar[dict],
name:
str,
par-
ent_name:
Op-
tional[str]
=
None,
vari-
able_prefix:
str
=
'')

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
structure_builders.AbstractStructureBuilder

Structure builder for mission definition.

Parameters definition – the whole content of definition file

1.6. fastoad 117

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

property qualified_name
).

Type Name of the current structure, preceded by the parent names, separated by colons (

type = 'mission'
Defined by subclass

definition: dataclasses.InitVar[dict]

name: str

Module contents

Package for providing Python implementation from mission definition file.

Submodules

fastoad.models.performances.mission.mission_definition.exceptions module

Exceptions for mission definition.

exception fastoad.models.performances.mission.mission_definition.exceptions.
FastMissionFileMissingMissionNameError

Bases: fastoad.exceptions.FastError

Raised when a mission definition is used without specifying the mission name.

fastoad.models.performances.mission.mission_definition.schema module

Schema for mission definition files.

class fastoad.models.performances.mission.mission_definition.schema.MissionDefinition(file_path:
Op-
tional[Union[str,
os.PathLike]]
=
None)

Bases: collections.OrderedDict

Class for reading a mission definition from a YAML file.

Path of YAML file should be provided at instantiation, or in load().

Parameters file_path – path of YAML file to read.

load(file_path: Union[str, os.PathLike])
Loads a mission definition from provided file path.

Any existing definition will be overwritten.

Parameters file_path – path of YAML file to read.

force_all_block_fuel_usage(mission_name)
Sets target fuel consumption to variable “~:block_fuel”.

118 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/os.html#os.PathLike
https://docs.python.org/3.9/library/collections.html#collections.OrderedDict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/os.html#os.PathLike

FAST-OAD, Release unknown

Module contents

fastoad.models.performances.mission.openmdao package

Subpackages

Submodules

fastoad.models.performances.mission.openmdao.base module

Base classes for mission-related OpenMDAO components.

class fastoad.models.performances.mission.openmdao.base.NeedsOWE(num_par_fd=1, **kwargs)
Bases: openmdao.core.system.System

To be inherited when Operating Weight Empty variable is used.

Initialize all attributes.

initialize()
Perform any one-time initialization run at instantiation.

class fastoad.models.performances.mission.openmdao.base.NeedsMTOW(num_par_fd=1, **kwargs)
Bases: openmdao.core.system.System

To be inherited when Max TakeOff Weight variable is used.

Initialize all attributes.

initialize()
Perform any one-time initialization run at instantiation.

class fastoad.models.performances.mission.openmdao.base.NeedsMFW(num_par_fd=1, **kwargs)
Bases: openmdao.core.system.System

To be inherited when Max Fuel Weight variable is used.

Initialize all attributes.

initialize()
Perform any one-time initialization run at instantiation.

class fastoad.models.performances.mission.openmdao.base.BaseMissionComp(**kwargs)
Bases: openmdao.core.system.System

Base class for mission components.

Initialize all attributes.

initialize()
Perform any one-time initialization run at instantiation.

property name_provider: enum.Enum
Enum class that provides mission variable names.

property variable_prefix: str
The prefix of variable names dedicated to the mission .

property mission_name: str
The name of considered mission.

1.6. fastoad 119

https://docs.python.org/3.9/library/enum.html#enum.Enum
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

property first_route_name: str
The name of first route (and normally the main one) in the mission.

static get_mission_definition(mission_file_path: Optional[Union[str, fas-
toad.models.performances.mission.mission_definition.schema.MissionDefinition]])
→ fas-
toad.models.performances.mission.mission_definition.schema.MissionDefinition

Parameters mission_file_path – the file path, or an already built MissionDefinition in-
stance. In the latter case, the returned instance will be the same object.

Returns the MissionDefinition instance built from provided mission_file_path

fastoad.models.performances.mission.openmdao.link_mtow module

OpenMDAO component for computation of sizing mission.

class fastoad.models.performances.mission.openmdao.link_mtow.ComputeMTOW(output_name=None,
input_names=None,
vec_size=1,
length=1, val=1.0,
scal-
ing_factors=None,
**kwargs)

Bases: openmdao.components.add_subtract_comp.AddSubtractComp

Computes MTOW from OWE, design payload and consumed fuel in sizing mission.

Allow user to create an addition/subtracton system with one-liner.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

fastoad.models.performances.mission.openmdao.mission module

FAST-OAD model for mission computation.

class fastoad.models.performances.mission.openmdao.mission.OMMission(**kwargs)
Bases: openmdao.core.group.Group, fastoad.models.performances.mission.openmdao.base.
BaseMissionComp, fastoad.models.performances.mission.openmdao.base.NeedsOWE

Computes a mission as specified in mission input file.

Set the solvers to nonlinear and linear block Gauss–Seidel by default.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

120 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

property flight_points: pandas.core.frame.DataFrame
Dataframe that lists all computed flight point data.

class fastoad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent

Computation of specific burned fuel (mission fuel / payload / mission range).

Store some bound methods so we can detect runtime overrides.

initialize()
Perform any one-time initialization run at instantiation.

property range_variable
Name of range variable.

property burned_fuel_variable
Name of burned fuel variable.

property specific_burned_fuel_variable
Name of specific burned fuel variable (mission fuel / payload / mission range).

property payload_variable
Name of payload variable.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
• inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

• outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

• discrete_inputs (dict or None) – If not None, dict containing discrete input
values.

• discrete_outputs (dict or None) – If not None, dict containing discrete output
values.

fastoad.models.performances.mission.openmdao.mission_run module

class fastoad.models.performances.mission.openmdao.mission_run.MissionComp(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent, fastoad.models.performances.
mission.openmdao.base.BaseMissionComp

Computes a mission as specified in mission input file.

Store some bound methods so we can detect runtime overrides.

initialize()
Perform any one-time initialization run at instantiation.

1.6. fastoad 121

https://pandas.pydata.org/pandas\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None

FAST-OAD, Release unknown

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

setup_partials()
Declare partials.

This is meant to be overridden by component classes. All partials should be declared here since this is
called after all size/shape information is known for all variables.

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
• inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

• outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

• discrete_inputs (dict or None) – If not None, dict containing discrete input
values.

• discrete_outputs (dict or None) – If not None, dict containing discrete output
values.

get_engine_wrapper()→ Optional[fastoad.model_base.propulsion.IOMPropulsionWrapper]
Overloading this method allows to define the engine without relying on the propulsion option.

(useful for tests)

Returns the engine wrapper instance

class fastoad.models.performances.mission.openmdao.mission_run.AdvancedMissionComp(**kwargs)
Bases: fastoad.models.performances.mission.openmdao.mission_run.MissionComp

Computes a mission as specified in mission input file.

Compared to MissionComp, it allows:
• to use an initializer iteration (simple Breguet) at first call.

• to use the mission as the design mission for the sizing process.

Store some bound methods so we can detect runtime overrides.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
• inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

• outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

• discrete_inputs (dict or None) – If not None, dict containing discrete input
values.

122 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None

FAST-OAD, Release unknown

• discrete_outputs (dict or None) – If not None, dict containing discrete output
values.

fastoad.models.performances.mission.openmdao.mission_wrapper module

Mission wrapper.

class fastoad.models.performances.mission.openmdao.mission_wrapper.MissionWrapper(mission_definition:
Union[str,
fas-
toad.models.performances.mission.mission_definition.schema.MissionDefinition],
*,
propul-
sion:
Op-
tional[fastoad.model_base.propulsion.IPropulsion]
= None,
refer-
ence_area:
Op-
tional[float]
= None,
mis-
sion_name:
Op-
tional[str]
= None,
vari-
able_prefix:
str =
'data:mission',
force_all_block_fuel_usage:
bool =
False)

Bases: fastoad.models.performances.mission.mission_definition.mission_builder.
mission_builder.MissionBuilder

Wrapper around MissionBuilder for using with OpenMDAO.

Unlike its parent class, the mission_name argument is mandatory at instantiation, unless there is only one mission
in the definition file.

Parameters
• mission_definition – a file path or MissionDefinition instance

• propulsion – if not provided, the property propulsion must be set before calling
build()

• reference_area – if not provided, the property reference_area must be set before
calling build()

• mission_name – name of chosen mission. Can be omitted if definition file contains only
one mission.

• variable_prefix – prefix for auto-generated variable names.

1.6. fastoad 123

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

• force_all_block_fuel_usage – if True and if mission_name is provided, the mission
definition will be modified to set the target fuel consumption to variable “~:block_fuel”

force_all_block_fuel_usage()
Modifies mission definition to set block fuel as target fuel consumption.

setup(component: openmdao.core.explicitcomponent.ExplicitComponent)
To be used during setup() of provided OpenMDAO component.

It adds input and output variables deduced from mission definition file.

Parameters component – the OpenMDAO component where the setup is done.

compute(start_flight_point: fastoad.model_base.flight_point.FlightPoint, inputs:
openmdao.vectors.vector.Vector, outputs: openmdao.vectors.vector.Vector)→
pandas.core.frame.DataFrame

To be used during compute() of an OpenMDAO component.

Builds the mission from input file, and computes it. outputs vector is filled with duration, burned fuel and
covered ground distance for each part of the flight.

Parameters
• start_flight_point – starting point of mission

• inputs – the input vector of the OpenMDAO component

• outputs – the output vector of the OpenMDAO component

Returns a pandas DataFrame where column names match fields of FlightPoint

get_reserve_variable_name()→ str

Returns the name of OpenMDAO variable for fuel reserve. This name is among the declared
outputs in setup().

fastoad.models.performances.mission.openmdao.payload_range module

Payload-Range diagram computation.

class fastoad.models.performances.mission.openmdao.payload_range.PayloadRange(**kwargs)
Bases: openmdao.core.group.Group, fastoad.models.performances.mission.openmdao.base.
BaseMissionComp, fastoad.models.performances.mission.openmdao.base.NeedsOWE, fastoad.
models.performances.mission.openmdao.base.NeedsMTOW , fastoad.models.performances.
mission.openmdao.base.NeedsMFW

OpenMDAO component for computing data for payload-range plots.

Set the solvers to nonlinear and linear block Gauss–Seidel by default.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

124 Chapter 1. Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

class fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeContourInputValues(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent, fastoad.models.performances.
mission.openmdao.base.BaseMissionComp, fastoad.models.performances.mission.openmdao.
base.NeedsOWE, fastoad.models.performances.mission.openmdao.base.NeedsMTOW , fastoad.
models.performances.mission.openmdao.base.NeedsMFW

This class provides input values for missions that will compute the contour of the payload-range diagram.

Store some bound methods so we can detect runtime overrides.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
• inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

• outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

• discrete_inputs (dict or None) – If not None, dict containing discrete input
values.

• discrete_outputs (dict or None) – If not None, dict containing discrete output
values.

class fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeGridInputValues(**kwargs)
Bases: openmdao.core.explicitcomponent.ExplicitComponent, fastoad.models.performances.
mission.openmdao.base.BaseMissionComp, fastoad.models.performances.mission.openmdao.
base.NeedsOWE

This class provides input values for missions that will compute points inside the contour of the payload-range
diagram.

Store some bound methods so we can detect runtime overrides.

initialize()
Perform any one-time initialization run at instantiation.

setup()
Declare inputs and outputs.

Available attributes: name pathname comm options

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)
Compute outputs given inputs. The model is assumed to be in an unscaled state.

Parameters
• inputs (Vector) – Unscaled, dimensional input variables read via inputs[key].

• outputs (Vector) – Unscaled, dimensional output variables read via outputs[key].

1.6. fastoad 125

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None

FAST-OAD, Release unknown

• discrete_inputs (dict or None) – If not None, dict containing discrete input
values.

• discrete_outputs (dict or None) – If not None, dict containing discrete output
values.

Module contents

fastoad.models.performances.mission.segments package

Subpackages

fastoad.models.performances.mission.segments.registered package

Subpackages

fastoad.models.performances.mission.segments.registered.takeoff package

Submodules

fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff module

Classes for climb/descent segments.

126 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/constants.html#None

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.1,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 127

FAST-OAD, Release unknown

AbstractTakeOffSegment

Computes a flight path segment where altitude is modified with constant pitch angle. As a result, the slope angle
and angle of attack are changing through time. Updates are based on longitudinal dynamics equations simplifies
with the assumption of constant pitch angle.

Note: Setting target
Target is an altitude and should be set to the safety altitude.

compute_next_flight_point(flight_points: List[fastoad.model_base.flight_point.FlightPoint], time_step:
float)→ fastoad.model_base.flight_point.FlightPoint

Computes time, altitude, speed, mass and ground distance of next flight point.

Parameters
• flight_points – previous flight points

• time_step – time step for computing next point

Returns the computed next flight point

complete_flight_point(flight_point: fastoad.model_base.flight_point.FlightPoint)
Redefinition, computes data for provided flight point.

Assumes that it is already defined for time, altitude, mass, ground distance and speed (TAS, EAS, or Mach).

Parameters flight_point – the flight point that will be completed in-place

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

get_next_alpha(previous_point: fastoad.model_base.flight_point.FlightPoint, time_step: float)→ float
Computes angle of attack (alpha) based on gamma_dot, using constant pitch angle assumption.

Parameters
• previous_point – the flight point from which next alpha is computed

• time_step – the duration between computed flight point and previous_point

static compute_next_gamma(next_point: fastoad.model_base.flight_point.FlightPoint, previous_point:
fastoad.model_base.flight_point.FlightPoint)

Computes slope angle (gamma) based on gamma_dot

Parameters
• next_point – the next flight point

• previous_point – the flight point from which next gamma is computed

128 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)
Redefinition : computes slope angle derivative (gamma_dot) and x-acceleration. Replaces CL, CD, lift
dan drag values (for ground effect and accelerated flight)

Parameters flight_point – parameters after propulsion model has been called (i.e. mass,
thrust and drag are available)

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.takeoff.rotation module

Classes for acceleration/deceleration segments.

1.6. fastoad 129

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.takeoff.rotation.RotationSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.1,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0,
wheels_friction:
float
=
0.03,
ro-
ta-
tion_rate:
float
=
0.05235987755982989,
al-
pha_limit:
float
=
0.23561944901923448)

Bases: fastoad.models.performances.mission.segments.time_step_base.

130 Chapter 1. Contents

FAST-OAD, Release unknown

AbstractGroundSegment

Computes a flight path segment with constant rotation rate while on ground and accelerating.

The target is the lift-off. A protection is included is the aircraft reaches alpha_limit (tail-strike).

rotation_rate: float = 0.05235987755982989
Rotation rate in radians/s, i.e. derivative of angle of attack. Default value is CS-25 specification.

alpha_limit: float = 0.23561944901923448
Angle of attack (in radians) where tail strike is expected. Default value is good for SMR aircraft.

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

get_next_alpha(previous_point: fastoad.model_base.flight_point.FlightPoint, time_step: float)→ float
Determine the next AoA based on imposed rotation rate.

Parameters
• previous_point – the flight point from which next alpha is computed

• time_step – the duration between computed flight point and previous_point

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.takeoff.takeoff module

Class for takeoff sequence

1.6. fastoad 131

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.takeoff.takeoff.TakeOffSequence(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.1,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0,
wheels_friction:
float
=
0.03,
ro-
ta-
tion_rate:
float
=
0.05235987755982989,
al-
pha_limit:
float
=
0.23561944901923448,
_tar-
get:
Op-
tional[fastoad.model_base.flight_point.FlightPoint]
=
None,
ro-
ta-
tion_equivalent_airspeed:
float
=
<ob-
ject
ob-
ject>,
ro-
ta-
tion_alpha_limit:
float
=
0.23561944901923448,
end_time_step:
float
=
0.05)

Bases: fastoad.models.performances.mission.segments.macro_segments.MacroSegmentBase,

132 Chapter 1. Contents

FAST-OAD, Release unknown

types.TakeOffSequence___Base

This class does a time-step simulation of a full takeoff:

• ground speed acceleration up to rotation_equivalent_airspeed

• rotation

• climb up to altitude provided in target (safety altitude)

rotation_equivalent_airspeed: float = <object object>
Equivalent airspeed to reach for starting aircraft rotation.

rotation_alpha_limit: float = 0.23561944901923448
Angle of attack (in radians) where tail strike is expected. Default value is good for SMR aircraft.

end_time_step: float = 0.05

build_sequence()
Instantiates all segments, using dataclass field values of this macro-segment.

Note: this method is called each time a dataclass field value is modified.

cls_sequence = [<class 'fastoad.models.performances.mission.segments.registered.
ground_speed_change.GroundSpeedChangeSegment'>, <class
'fastoad.models.performances.mission.segments.registered.takeoff.rotation.
RotationSegment'>, <class
'fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.
EndOfTakeoffSegment'>]

List of segment classes that will compose this macro-segment.

Module contents

Classes for simulating takeoff-related flight segments.

Be sure to import this package before interpreting a mission input file.

1.6. fastoad 133

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

Submodules

fastoad.models.performances.mission.segments.registered.altitude_change module

Classes for climb/descent segments.

134 Chapter 1. Contents

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
2.0,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0,
max-
i-
mum_flight_level:
float
=
500.0)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 135

FAST-OAD, Release unknown

AbstractManualThrustSegment

Computes a flight path segment where altitude is modified with constant speed.

Note: Setting speed
Constant speed may be:

• constant true airspeed (TAS)

• constant equivalent airspeed (EAS)

• constant Mach number

Target should have "constant" as definition for one parameter among true_airspeed,
equivalent_airspeed or mach. All computed flight points will use the corresponding start value.
The two other speed values will be computed accordingly.

If not “constant” parameter is set, constant TAS is assumed.

Note: Setting target
Target can be an altitude, or a speed:

• Target altitude can be a float value (in meters), or can be set to:

– OPTIMAL_ALTITUDE: in that case, the target altitude will be the altitude where maximum lift/drag
ratio is achieved for target speed, depending on current mass.

– OPTIMAL_FLIGHT_LEVEL: same as above, except that altitude will be rounded to the nearest flight
level (multiple of 100 feet).

• For a speed target, as explained above, one value TAS, EAS or Mach must be "constant". One of the
two other ones can be set as target.

In any case, the achieved value will be capped so it respects maximum_flight_level.

time_step: float = 2.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

maximum_flight_level: float = 500.0
The maximum allowed flight level (i.e. multiple of 100 feet).

OPTIMAL_ALTITUDE = 'optimal_altitude'
Using this value will tell to target the altitude with max lift/drag ratio.

OPTIMAL_FLIGHT_LEVEL = 'optimal_flight_level'
Using this value will tell to target the nearest flight level to altitude with max lift/drag ratio.

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

136 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)→ Tuple[float,
float]

Computes slope angle (gamma) and acceleration.

Parameters flight_point – parameters after propulsion model has been called (i.e. mass,
thrust and drag are available)

Returns slope angle in radians and acceleration in m**2/s

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.cruise module

Classes for simulating cruise segments.

1.6. fastoad 137

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.cruise.CruiseSegment(name:
str = '',
target:
fas-
toad.model_base.flight_point.FlightPoint
=
<object
object>,
isa_offset:
float =
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<object
object>,
polar:
fas-
toad.models.performances.mission.polar.Polar
=
<object
object>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
= Un-
changed-
Polar(),
refer-
ence_area:
float =
<object
object>,
time_step:
float =
60.0,
maxi-
mum_CL:
Op-
tional[float]
= None,
alti-
tude_bounds:
tuple =
(-500.0,
40000.0),
mach_bounds:
tuple =
(-1e-06,
5.0),
inter-
rupt_if_getting_further_from_target:
bool =
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
= Engi-
neSet-
ting.CLIMB)

Bases: fastoad.models.performances.mission.segments.time_step_base.

138 Chapter 1. Contents

FAST-OAD, Release unknown

AbstractRegulatedThrustSegment

Class for computing cruise flight segment at constant altitude and speed.

Mach is considered constant, equal to Mach at starting point. Altitude is constant. Target is a specified
ground_distance. The target definition indicates the ground_distance to be covered during the segment, inde-
pendently of the initial value.

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

1.6. fastoad 139

https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.cruise.OptimalCruiseSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
60.0,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB)

Bases: fastoad.models.performances.mission.segments.registered.cruise.CruiseSegment

140 Chapter 1. Contents

FAST-OAD, Release unknown

Class for computing cruise flight segment at maximum lift/drag ratio.

Altitude is set at every point to get the optimum CL according to current mass. Target is a specified
ground_distance. The target definition indicates the ground_distance to be covered during the segment, inde-
pendently of the initial value. Target should also specify a speed parameter set to “constant”, among mach,
true_airspeed and equivalent_airspeed. If not, Mach will be assumed constant.

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

1.6. fastoad 141

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.cruise.ClimbAndCruiseSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
60.0,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
climb_segment:
Op-
tional[fastoad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment]
=
None,
max-
i-
mum_flight_level:
float
=
500.0)

Bases: fastoad.models.performances.mission.segments.registered.cruise.CruiseSegment

142 Chapter 1. Contents

FAST-OAD, Release unknown

Class for computing cruise flight segment at constant altitude.

Target is a specified ground_distance. The target definition indicates the ground_distance to be covered during
the segment, independently of the initial value. Target should also specify a speed parameter set to “constant”,
among mach, true_airspeed and equivalent_airspeed. If not, Mach will be assumed constant.

Target altitude can also be set to OPTIMAL_FLIGHT_LEVEL. In that case, the cruise will be preceded by a climb
segment and climb_segment must be set at instantiation.

(Target ground distance will be achieved by the sum of ground distances covered during climb and cruise)

In this case, climb will be done up to the IFR Flight Level (as multiple of 100 feet) that ensures minimum mass
decrease, while being at most equal to maximum_flight_level.

climb_segment: fastoad.models.performances.mission.segments.registered.
altitude_change.AltitudeChangeSegment = None

The AltitudeChangeSegment that can be used if a preliminary climb is needed (its target will be ignored).

maximum_flight_level: float = 500.0
The maximum allowed flight level (i.e. multiple of 100 feet).

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

1.6. fastoad 143

https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.cruise.BreguetCruiseSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
1.0,
time_step:
float
=
60.0,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
use_max_lift_drag_ratio:
bool
=
False)

Bases: fastoad.models.performances.mission.segments.registered.cruise.CruiseSegment

144 Chapter 1. Contents

FAST-OAD, Release unknown

Class for computing cruise flight segment at constant altitude using Breguet-Leduc formula.

As formula relies on SFC, the propulsion model must be able to fill FlightPoint.sfc when FlightPoint.thrust is
provided.

use_max_lift_drag_ratio: bool = False
if True, max lift/drag ratio will be used instead of the one computed with polar using CL deduced from
mass and altitude. In this case, reference_area parameter will be unused

reference_area: float = 1.0
The reference area, in m**2. Used only if use_max_lift_drag_ratio is False.

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.ground_speed_change module

Classes for acceleration/deceleration segments.

1.6. fastoad 145

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.ground_speed_change.GroundSpeedChangeSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.1,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0,
wheels_friction:
float
=
0.03)

Bases: fastoad.models.performances.mission.segments.time_step_base.

146 Chapter 1. Contents

FAST-OAD, Release unknown

AbstractGroundSegment

Computes a flight path segment where aircraft is accelerated or de-accelerated on the ground

The target must define an airspeed (equivalent, true or Mach) value.

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.hold module

Class for simulating hold segment.

1.6. fastoad 147

https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.hold.HoldSegment(name: str =
'', target: fas-
toad.model_base.flight_point.FlightPoint
= <object
object>,
isa_offset:
float = 0.0,
propulsion:
fas-
toad.model_base.propulsion.IPropulsion
= <object
object>,
polar: fas-
toad.models.performances.mission.polar.Polar
= <object
object>, po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Unchanged-
Polar(),
refer-
ence_area:
float =
<object
object>,
time_step:
float = 60.0,
maxi-
mum_CL:
Op-
tional[float]
= None, alti-
tude_bounds:
tuple =
(-500.0,
40000.0),
mach_bounds:
tuple =
(-1e-06, 5.0),
inter-
rupt_if_getting_further_from_target:
bool = True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
= EngineSet-
ting.CLIMB)

Bases: fastoad.models.performances.mission.segments.time_step_base.
AbstractRegulatedThrustSegment, fastoad.models.performances.mission.segments.
time_step_base.AbstractFixedDurationSegment

148 Chapter 1. Contents

FAST-OAD, Release unknown

Class for computing hold flight segment.

Mach is considered constant, equal to Mach at starting point. Altitude is constant. Target is a specified time. The
target definition indicates the time duration of the segment, independently of the initial time value.

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.mass_input module

Class for specifying input mass at “any” point in the mission.

class fastoad.models.performances.mission.segments.registered.mass_input.MassTargetSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0)

Bases: fastoad.models.performances.mission.segments.base.AbstractFlightSegment

Class that simply sets a target mass.

compute_from() returns a 1-row dataframe that is the start point with mass set to provided target mass.

class:~fastoad.models.performances.mission.base.FlightSequence ensures that mass is consistent for segments
prior to this one.

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

1.6. fastoad 149

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments.registered.speed_change module

Classes for acceleration/deceleration segments.

150 Chapter 1. Contents

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.speed_change.SpeedChangeSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.2,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 151

FAST-OAD, Release unknown

AbstractManualThrustSegment

Computes a flight path segment where speed is modified with no change in altitude.

The target must define a speed value among true_airspeed, equivalent_airspeed and mach.

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)→ Tuple[float,
float]

Computes slope angle (gamma) and acceleration.

Parameters flight_point – parameters after propulsion model has been called (i.e. mass,
thrust and drag are available)

Returns slope angle in radians and acceleration in m**2/s

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.start module

Class for mission start point.

class fastoad.models.performances.mission.segments.registered.start.Start(name: str = '',
target: fas-
toad.model_base.flight_point.FlightPoint
= <object object>,
isa_offset: float =
0.0)

Bases: fastoad.models.performances.mission.segments.base.AbstractFlightSegment

Provides a starting point for a mission.

compute_from() will return only 1 flight points that matches the target.

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

152 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.taxi module

Classes for Taxi sequences.

1.6. fastoad 153

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.taxi.TaxiSegment(name: str =
'', target: fas-
toad.model_base.flight_point.FlightPoint
= <object
object>,
isa_offset:
float = 0.0,
propulsion:
fas-
toad.model_base.propulsion.IPropulsion
= <object
object>,
polar: Op-
tional[fastoad.models.performances.mission.polar.Polar]
= None, po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Unchanged-
Polar(),
refer-
ence_area:
float = 1.0,
time_step:
float = 60.0,
maxi-
mum_CL:
Op-
tional[float]
= None, alti-
tude_bounds:
tuple =
(-500.0,
40000.0),
mach_bounds:
tuple =
(-1e-06, 5.0),
inter-
rupt_if_getting_further_from_target:
bool = True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
= EngineSet-
ting.CLIMB,
thrust_rate:
float = 1.0,
true_airspeed:
float = 0.0)

Bases: fastoad.models.performances.mission.segments.time_step_base.
AbstractManualThrustSegment, fastoad.models.performances.mission.segments.
time_step_base.AbstractFixedDurationSegment

154 Chapter 1. Contents

FAST-OAD, Release unknown

Class for computing Taxi phases.

Taxi phase has a target duration (target.time should be provided) and is at constant altitude, speed and thrust rate.

polar: fastoad.models.performances.mission.polar.Polar = None
The Polar instance that will provide drag data.

reference_area: float = 1.0
The reference area, in m**2.

time_step: float = 60.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

true_airspeed: float = 0.0

get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)→ Tuple[float,
float]

Computes slope angle (gamma) and acceleration.

Parameters flight_point – parameters after propulsion model has been called (i.e. mass,
thrust and drag are available)

Returns slope angle in radians and acceleration in m**2/s

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

fastoad.models.performances.mission.segments.registered.transition module

Class for very simple transition in some flight phases.

1.6. fastoad 155

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.registered.transition.DummyTransitionSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
mass_ratio:
float
=
1.0,
re-
serve_mass_ratio:
float
=
0.0)

Bases: fastoad.models.performances.mission.segments.base.AbstractFlightSegment

Computes a transient flight part in a very quick and dummy way.

compute_from() will return only 2 or 3 flight points.

The second flight point is the end of transition. Its parameters are equal to those provided in target.

There is an exception if target does not specify any mass (i.e. self.target.mass == 0). Then the mass of the second
flight point is the start mass multiplied by mass_ratio.

If reserve_mass_ratio is non-zero, a third flight point is added, with parameters equal to flight_point(2),
except for mass where:

mass(2) - reserve_mass_ratio * mass(3) = mass(3).

In different words, mass(3) would be the Zero Fuel Weight (ZFW) and reserve can be expressed as a percentage
of ZFW.

mass_ratio: float = 1.0
The ratio (aircraft mass at END of segment)/(aircraft mass at START of segment)

reserve_mass_ratio: float = 0.0
The ratio (fuel mass)/(aircraft mass at END of segment) that will be consumed at end of segment.

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

156 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

Module contents

Classes for simulating flight segments.

Be sure to import this package before interpreting a mission input file.

Submodules

fastoad.models.performances.mission.segments.base module

Base classes for simulating flight segments.

class fastoad.models.performances.mission.segments.base.RegisterSegment(keyword='')
Bases: fastoad.models.performances.mission.base.RegisterElement

Decorator for registering IFlightPart classes.

>>> @RegisterSegment("segment_foo")
>>> class FooSegment(IFlightPart):
>>> ...

Then the registered class can be obtained by:

>>> my_class = RegisterSegment.get_class("segment_foo")

class fastoad.models.performances.mission.segments.base.SegmentDefinitions(*args, **kwargs)
Bases: object

Class that associates segment names (mission file keywords) and their implementation.

classmethod add_segment(segment_name: str, segment_class:
Type[fastoad.models.performances.mission.base.IFlightPart])

Adds a segment definition.

Parameters
• segment_name – segment names (mission file keyword)

• segment_class – segment implementation (derived of FlightSegment)

classmethod get_segment_class(segment_name)→
Optional[Type[fastoad.models.performances.mission.base.IFlightPart]]

Provides the segment implementation for provided name.

Parameters segment_name –

Returns the segment implementation (derived of FlightSegment)

Raises FastUnknownMissionSegmentError – if segment type has not been declared.

1.6. fastoad 157

https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.base.RegisteredSegment(*args, **kwargs)
Bases: fastoad.models.performances.mission.base.IFlightPart, abc.ABC

Base class for classes that can be associated with a keyword in mission definition file.

When subclassing this class, the attribute “mission_file_keyword” can be set, so that the segment can be used in
mission file definition with this keyword:

>>> class NewSegment(AbstractFlightSegment, mission_file_keyword="new_segment")
>>> ...

Then in mission definition:

phases:
my_phase:

parts:
- segment: new_segment

target: fastoad.model_base.flight_point.FlightPoint

class fastoad.models.performances.mission.segments.base.AbstractFlightSegment(name: str = '',
target: fas-
toad.model_base.flight_point.FlightPoint
= <object
object>,
isa_offset:
float = 0.0)

Bases: fastoad.models.performances.mission.base.IFlightPart, abc.ABC

Base class for flight path segment.

As a dataclass, attributes can be set at instantiation.

Important: compute_from() is the method to call to achieve the segment computation.

However, when subclassing, the method to overload is compute_from_start_to_target().
Generic reprocessing of start and target flight points is done in compute_from() before calling
compute_from_start_to_target()

target: fastoad.model_base.flight_point.FlightPoint = <object object>
A FlightPoint instance that provides parameter values that should all be reached at the end of
compute_from(). Possible parameters depend on the current segment. A parameter can also be set
to CONSTANT_VALUE to tell that initial value should be kept during all segment.

isa_offset: float = 0.0
The temperature offset for ISA atmosphere model.

CONSTANT_VALUE = 'constant'
Using this value will tell to keep the associated parameter constant.

abstract compute_from_start_to_target(start, target)→ pandas.core.frame.DataFrame
Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

158 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

compute_from(start: fastoad.model_base.flight_point.FlightPoint)→ pandas.core.frame.DataFrame
Computes the flight path segment from provided start point.

Computation ends when target is attained, or if the computation stops getting closer to target. For instance,
a climb computation with too low thrust will only return one flight point, that is the provided start point.

Important: When subclasssing, if you need to overload compute_from(), you should consider overrid-
ing compute_from_start_to_target() instead. Therefore, you will take benefit of the preprocessing
of start and target flight points that is done in compute_from().

Parameters start – the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where column names match fields of FlightPoint

complete_flight_point(flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes data for provided flight point.

Assumes that it is already defined for time, altitude, mass, ground distance and speed (TAS, EAS, or Mach).

Parameters flight_point – the flight point that will be completed in-place

static complete_flight_point_from(flight_point: fastoad.model_base.flight_point.FlightPoint, source:
fastoad.model_base.flight_point.FlightPoint)

Sets undefined values in flight_point using the ones from source.

The particular case of speeds is taken into account: if at least one speed parameter is defined, all other
speed parameters are considered defined, because they will be deduced when needed.

Parameters
• flight_point –

• source –

static consume_fuel(flight_point: fastoad.model_base.flight_point.FlightPoint, previous:
fastoad.model_base.flight_point.FlightPoint, fuel_consumption: Optional[float] =
None, mass_ratio: Optional[float] = None)

This method should be used whenever fuel consumption has to be stored.

It ensures that “mass” and “consumed_fuel” fields will be kept consistent.

Mass can be modified using the ‘fuel_consumption” argument, or the ‘mass_ratio’ argument. One of them
should be provided.

Parameters
• flight_point – the FlightPoint instance where “mass” and “consumed_fuel” fields

will get new values

• previous – FlightPoint instance that will be the base for the computation

• fuel_consumption – consumed fuel, in kg, between ‘previous’ and ‘flight_point’.
Positive when fuel is consumed.

• mass_ratio – the ratio flight_point.mass/previous.mass

1.6. fastoad 159

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments.macro_segments module

Base for macro-segments.

class fastoad.models.performances.mission.segments.macro_segments.MacroSegmentBase(name:
str = '',
target:
fas-
toad.model_base.flight_point.FlightPoint
=
<object
object>,
_target:
Op-
tional[fastoad.model_base.flight_point.FlightPoint]
=
None)

Bases: fastoad.models.performances.mission.base.FlightSequence

Base class for macro-segments.

A macro-segment is a sequence of flight segments. Parameters of the macro-segment drive the parameters of
aggregated segments.

A field value will be applied to all segments that have the concerned field. The exception is the target field, that
is applied only on last segment.

This class is expected to be used through MacroSegmentMeta. It sets the basic mechanism for aggregating flight
segments.

Derived classes are expected to have dataclass fields that match dataclass fields of aggregated segment classes.

target: fastoad.model_base.flight_point.FlightPoint = <object object>
Target flight point for end of takeoff

cls_sequence = []
List of segment classes that will compose this macro-segment.

build_sequence()
Instantiates all segments, using dataclass field values of this macro-segment.

Since only target of the last segment is set (using target of this macro-segment), derived classes should
overload this method to manage at least targets of intermediate segments.

Note: this method is called each time a dataclass field value is modified.

class fastoad.models.performances.mission.segments.macro_segments.MacroSegmentMeta(cls_name,
bases,
attrs, *,
cls_sequence=None)

Bases: abc.ABCMeta

Metaclass for macro-segments.

It should be used with

>>> class TakeOffSequence(metaclass=MacroSegmentMeta,
>>> cls_sequence=[...],
>>>):

160 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABCMeta

FAST-OAD, Release unknown

It will make so that the created class will have dataclass fields that match dataclass fields of all classes in
‘cls_sequence’.

fastoad.models.performances.mission.segments.time_step_base module

Base classes for time-step segments

1.6. fastoad 161

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.2,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB)

Bases: fastoad.models.performances.mission.segments.base.AbstractFlightSegment, abc.ABC

162 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC

FAST-OAD, Release unknown

Base class for time step computation flight segments.

This class implements the time computation. For this computation to work, subclasses must implement abstract
methods get_distance_to_target(), get_gamma_and_acceleration() and compute_propulsion().

compute_next_alpha() also has to be overloaded if angle of attack should be different of 0.

propulsion: fastoad.model_base.propulsion.IPropulsion = <object object>
A IPropulsion instance that will be called at each time step.

polar: fastoad.models.performances.mission.polar.Polar = <object object>
The Polar instance that will provide drag data.

polar_modifier:
fastoad.models.performances.mission.polar_modifier.AbstractPolarModifier =
UnchangedPolar()

reference_area: float = <object object>
The reference area, in m**2.

time_step: float = 0.2
Used time step for computation (actual time step can be lower at some particular times of the flight path).

maximum_CL: float = None

altitude_bounds: tuple = (-500.0, 40000.0)
Minimum and maximum authorized altitude values. If computed altitude gets beyond these limits, com-
putation will be interrupted and a warning message will be issued in logger.

mach_bounds: tuple = (-1e-06, 5.0)
Minimum and maximum authorized mach values. If computed Mach gets beyond these limits, computation
will be interrupted and a warning message will be issued in logger.

interrupt_if_getting_further_from_target: bool = True
If True, computation will be interrupted if a parameter stops getting closer to target between two iterations
(which can mean the provided thrust rate is not adapted).

engine_setting: fastoad.constants.EngineSetting = 2
The EngineSetting value associated to the segment. Can be used in the propulsion model.

abstract get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint],
target: fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

abstract compute_propulsion(flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes propulsion data.

Provided flight point is modified in place.

Generally, this method should end with:

1.6. fastoad 163

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

self.propulsion.compute_flight_points(flight_point)

Parameters flight_point –

abstract get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)→
Tuple[float, float]

Computes slope angle (gamma) and acceleration.

Parameters flight_point – parameters after propulsion model has been called (i.e. mass,
thrust and drag are available)

Returns slope angle in radians and acceleration in m**2/s

get_next_alpha(previous_point: fastoad.model_base.flight_point.FlightPoint, time_step: float)→ float
Determine the next angle of attack.

Parameters
• previous_point – the flight point from which next alpha is computed

• time_step – the duration between computed flight point and previous_point

complete_flight_point(flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes data for provided flight point.

Assumes that it is already defined for time, altitude, mass, ground distance and speed (TAS, EAS, or Mach).

Parameters flight_point – the flight point that will be completed in-place

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

compute_next_flight_point(flight_points: List[fastoad.model_base.flight_point.FlightPoint], time_step:
float)→ fastoad.model_base.flight_point.FlightPoint

Computes time, altitude, speed, mass and ground distance of next flight point.

Parameters
• flight_points – previous flight points

• time_step – time step for computing next point

Returns the computed next flight point

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

164 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.time_step_base.AbstractManualThrustSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.2,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 165

FAST-OAD, Release unknown

AbstractTimeStepFlightSegment, abc.ABC

Base class for computing flight segment where thrust rate is imposed.

Variables thrust_rate – used thrust rate. Can be set at instantiation using a keyword argument.

thrust_rate: float = 1.0

compute_propulsion(flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes propulsion data.

Provided flight point is modified in place.

Generally, this method should end with:

self.propulsion.compute_flight_points(flight_point)

Parameters flight_point –

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

166 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.time_step_base.AbstractRegulatedThrustSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
60.0,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 167

FAST-OAD, Release unknown

AbstractTimeStepFlightSegment, abc.ABC

Base class for computing flight segment where thrust rate is adjusted on drag.

time_step: float = 60.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

compute_propulsion(flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes propulsion data.

Provided flight point is modified in place.

Generally, this method should end with:

self.propulsion.compute_flight_points(flight_point)

Parameters flight_point –

get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)→ Tuple[float,
float]

Computes slope angle (gamma) and acceleration.

Parameters flight_point – parameters after propulsion model has been called (i.e. mass,
thrust and drag are available)

Returns slope angle in radians and acceleration in m**2/s

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

168 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.time_step_base.AbstractFixedDurationSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
60.0,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 169

FAST-OAD, Release unknown

AbstractTimeStepFlightSegment, abc.ABC

Base class for computing a fixed-duration segment.

time_step: float = 60.0
Used time step for computation (actual time step can be lower at some particular times of the flight path).

get_distance_to_target(flight_points: List[fastoad.model_base.flight_point.FlightPoint], target:
fastoad.model_base.flight_point.FlightPoint)→ float

Computes a “distance” from last flight point to target.

Computed does not need to have a real meaning. The important point is that it must be signed so that
algorithm knows on which “side” of the target we are. And of course, it should be 0. if flight point is on
target.

Parameters
• flight_points – list of all currently computed flight_points

• target – segment target (will not contain relative values)

Returns
O. if target is attained, a non-null value otherwise

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

170 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.time_step_base.AbstractTakeOffSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.1,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 171

FAST-OAD, Release unknown

AbstractManualThrustSegment, abc.ABC

Class for computing takeoff segment.

time_step: float = 0.1
Used time step for computation (actual time step can be lower at some particular times of the flight path).

compute_from_start_to_target(start: fastoad.model_base.flight_point.FlightPoint, target:
fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Here should come the implementation for computing flight points between start and target flight points.

Parameters
• start –

• target – Definition of segment target

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

172 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

class fastoad.models.performances.mission.segments.time_step_base.AbstractGroundSegment(name:
str
=
'',
tar-
get:
fas-
toad.model_base.flight_point.FlightPoint
=
<ob-
ject
ob-
ject>,
isa_offset:
float
=
0.0,
propul-
sion:
fas-
toad.model_base.propulsion.IPropulsion
=
<ob-
ject
ob-
ject>,
po-
lar:
fas-
toad.models.performances.mission.polar.Polar
=
<ob-
ject
ob-
ject>,
po-
lar_modifier:
fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
=
Un-
changed-
Po-
lar(),
ref-
er-
ence_area:
float
=
<ob-
ject
ob-
ject>,
time_step:
float
=
0.1,
max-
i-
mum_CL:
Op-
tional[float]
=
None,
al-
ti-
tude_bounds:
tu-
ple
=
(-
500.0,
40000.0),
mach_bounds:
tu-
ple
=
(-
1e-
06,
5.0),
in-
ter-
rupt_if_getting_further_from_target:
bool
=
True,
en-
gine_setting:
fas-
toad.constants.EngineSetting
=
En-
gi-
ne-
Set-
ting.CLIMB,
thrust_rate:
float
=
1.0,
wheels_friction:
float
=
0.03)

Bases: fastoad.models.performances.mission.segments.time_step_base.

1.6. fastoad 173

FAST-OAD, Release unknown

AbstractTakeOffSegment, abc.ABC

Class for computing accelerated segments on the ground with wheel friction.

wheels_friction: float = 0.03

get_gamma_and_acceleration(flight_point: fastoad.model_base.flight_point.FlightPoint)
For ground segment, gamma is assumed always 0 and wheel friction (with or without brake) is added to
drag

complete_flight_point(flight_point: fastoad.model_base.flight_point.FlightPoint)
Computes data for provided flight point using AoA and apply polar modification if any

Parameters flight_point – the flight point that will be completed in-place

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

class fastoad.models.performances.mission.segments.time_step_base.FlightSegment(*args,
**kwargs)

Bases: fastoad.models.performances.mission.segments.time_step_base.
AbstractTimeStepFlightSegment, abc.ABC

Base class for time step computation flight segments.

This class implements the time computation. For this computation to work, subclasses must im-
plement abstract methods get_get_distance_to_target(), get_gamma_and_acceleration() and
compute_propulsion().

property target: fastoad.model_base.flight_point.FlightPoint
The base class of the class hierarchy.

When called, it accepts no arguments and returns a new featureless instance that has no instance attributes
and cannot be given any.

Module contents

Submodules

fastoad.models.performances.mission.base module

Base classes for mission computation.

class fastoad.models.performances.mission.base.IFlightPart(name: str = '')
Bases: abc.ABC, fastoad.model_base.datacls.BaseDataClass

Base class for all flight parts.

name: str = ''

target: fastoad.model_base.flight_point.FlightPoint

abstract compute_from(start: fastoad.model_base.flight_point.FlightPoint)→
pandas.core.frame.DataFrame

Computes a flight sequence from provided start point.

174 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/abc.html#abc.ABC
https://docs.python.org/3.9/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

Parameters start – the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where column names match fields of FlightPoint

class fastoad.models.performances.mission.base.FlightSequence(name: str = '', _target: Op-
tional[fastoad.model_base.flight_point.FlightPoint]
= None)

Bases: fastoad.models.performances.mission.base.IFlightPart

Defines and computes a flight sequence.

Use .extend() method to add a list of parts in the sequence.

consumed_mass_before_input_weight: float = 0.0
Consumed mass between sequence start and target mass, if any defined

part_flight_points: List[pandas.core.frame.DataFrame]

compute_from(start: fastoad.model_base.flight_point.FlightPoint)→ pandas.core.frame.DataFrame
Computes a flight sequence from provided start point.

Parameters start – the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where column names match fields of FlightPoint

property target: Optional[fastoad.model_base.flight_point.FlightPoint]
Target of the last element of current sequence.

append(flight_part: fastoad.models.performances.mission.base.IFlightPart)
Append flight part to the end of the sequence.

clear()
Remove all parts from flight sequence.

extend(seq)
Extend flight sequence by appending elements from the iterable.

index(*args, **kwargs)
Return first index of value (see list.index()).

class fastoad.models.performances.mission.base.RegisterElement(keyword='')
Bases: object

Base class for decorators that can associate a class with a keyword.

When subclassing, the argument ‘base_class’ allow to specify a class that should be a parent of all registered
classes. A specific check will be done at register time.

>>> class RegisterFeature(RegisterElement, base_class=AbstractFeature)
>>> ...

Then the newly created class may be used as decorator like:

>>> @RegisterFeature("identifier_foo")
>>> class FooFeature(AbstractFeature):
>>> ...

Then the registered class can be obtained by:

1.6. fastoad 175

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \defaulthyphenchar }{}{} docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

>>> my_class = RegisterFeature.get_class("identifier_foo")

classmethod get_class(keyword)→ Optional[type]
Provides the element implementation for provided name.

Parameters keyword –

Returns the element implementation

Raises FastUnknownMissionElementError – if element has not been declared.

classmethod get_classes()→ Dict[str, type]

Returns dict that associates keywords to their registered class.

fastoad.models.performances.mission.exceptions module

Exceptions for mission package.

exception fastoad.models.performances.mission.exceptions.FastFlightSegmentUnexpectedKeywordArgument(bad_keyword)
Bases: fastoad.exceptions.FastUnexpectedKeywordArgument

Raised when a segment is instantiated with an incorrect keyword argument.

exception fastoad.models.performances.mission.exceptions.FastFlightPointUnexpectedKeywordArgument(bad_keyword)
Bases: fastoad.exceptions.FastUnexpectedKeywordArgument

Raised when a FlightPoint is instantiated with an incorrect keyword argument.

exception
fastoad.models.performances.mission.exceptions.FastFlightSegmentIncompleteFlightPoint

Bases: fastoad.exceptions.FastError

Raised when a segment computation encounters a FlightPoint instance without needed parameters.

exception fastoad.models.performances.mission.exceptions.FastUnknownMissionElementError(element_type:
str)

Bases: fastoad.exceptions.FastError

Raised when an undeclared element type is requested.

fastoad.models.performances.mission.mission module

Definition of aircraft mission.

class fastoad.models.performances.mission.mission.Mission(name: str = '', _target: Op-
tional[fastoad.model_base.flight_point.FlightPoint]
= None, target_fuel_consumption:
Optional[float] = None, reserve_ratio:
Optional[float] = 0.0,
reserve_base_route_name: Optional[str]
= None, fuel_accuracy: float = 10.0)

Bases: fastoad.models.performances.mission.base.FlightSequence

Computes a whole mission.

Allows to define a target fuel consumption for the whole mission.

176 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#type
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#type
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

target_fuel_consumption: Optional[float] = None
If not None, the mission will adjust the first

reserve_ratio: Optional[float] = 0.0

reserve_base_route_name: Optional[str] = None

fuel_accuracy: float = 10.0
Accuracy on actual consumed fuel for the solver. In kg

property consumed_fuel: Optional[float]
Total consumed fuel for the whole mission (after launching compute_from())

property first_route: fastoad.models.performances.mission.routes.RangedRoute
First route in the mission.

compute_from(start: fastoad.model_base.flight_point.FlightPoint)→ pandas.core.frame.DataFrame
Computes a flight sequence from provided start point.

Parameters start – the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where column names match fields of FlightPoint

get_reserve_fuel()

Returns the fuel quantity for reserve, obtained after mission computation.

fastoad.models.performances.mission.polar module

Aerodynamic polar data.

class fastoad.models.performances.mission.polar.Polar(cl: numpy.ndarray, cd: numpy.ndarray,
alpha: Optional[numpy.ndarray] = None)

Bases: object

Class for managing aerodynamic polar data.

Links drag coefficient (CD) to lift coefficient (CL). It is defined by two vectors with CL and CD values. If a
vector of angle of attack (alpha) is given, it links alpha and CL

Once defined, for any CL value, CD can be obtained using cd(). For any alpha given, CL is obtained using
:meth:’cl’.

Parameters
• cl – a N-elements array with CL values

• cd – a N-elements array with CD values that match CL

• alpha – a N-elements array with angle of attack corresponding to CL values

property definition_cl
The vector that has been used for defining lift coefficient.

property definition_cd
The vector that has been used for defining drag coefficient.

property definition_alpha
The vector that has been used for defining AoA.

1.6. fastoad 177

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

property optimal_cl
The CL value that provides larger lift/drag ratio.

cd(cl=None)
Computes drag coefficient (CD) by interpolation in definition data.

Parameters cl – lift coefficient (CL) values. If not provided, the CL definition vector will be
used (i.e. CD definition vector will be returned)

Returns CD values for each provide CL values

cl(alpha)
The lift coefficient corresponding to alpha (rad)

Parameters alpha – the angle of attack at which CL is evaluated

Returns CL value for each alpha.

fastoad.models.performances.mission.polar_modifier module

Aerodynamics polar modifier.

class fastoad.models.performances.mission.polar_modifier.AbstractPolarModifier
Bases: abc.ABC

Base class to implement a change to the polar during the mission computation

abstract modify_polar(polar: fastoad.models.performances.mission.polar.Polar, flight_point:
fastoad.model_base.flight_point.FlightPoint)→
fastoad.models.performances.mission.polar.Polar

Parameters
• polar – an instance of Polar

• flight_point – an intance of FlightPoint containg only floats

Returns the modified polar for the flight point

class fastoad.models.performances.mission.polar_modifier.RegisterPolarModifier(keyword='')
Bases: fastoad.models.performances.mission.base.RegisterElement

Decorator for registering AbstractPolarModifier classes.

>>> @RegisterPolarModifier("polar_modifier_foo")
>>> class FooPolarModifier(IFlightPart):
>>> ...

Then the registered class can be obtained by:

>>> my_class = RegisterPolarModifier.get_class("polar_modifier_foo")

class fastoad.models.performances.mission.polar_modifier.UnchangedPolar
Bases: fastoad.models.performances.mission.polar_modifier.AbstractPolarModifier

Default polar modifier returning the polar without changes

modify_polar(polar: fastoad.models.performances.mission.polar.Polar, flight_point:
fastoad.model_base.flight_point.FlightPoint)→
fastoad.models.performances.mission.polar.Polar

178 Chapter 1. Contents

https://docs.python.org/3.9/library/abc.html#abc.ABC

FAST-OAD, Release unknown

Parameters
• polar – a polar instance

• flight_point – a FlightPoint instance

Returns the polar instance

class fastoad.models.performances.mission.polar_modifier.GroundEffectRaymer(span: float, land-
ing_gear_height:
float, in-
duced_drag_coefficient:
float, k_winglet:
float, k_cd: float,
ground_altitude:
float = 0.0)

Bases: fastoad.models.performances.mission.polar_modifier.AbstractPolarModifier

Evaluates the drag in ground effect, using Raymer’s model: ‘Aircraft Design A conceptual approach’, D.
Raymer p304

span: float
Wingspan

landing_gear_height: float
Main landing gear height

induced_drag_coefficient: float
Induced drag coefficient, multiplies CL**2 to obtain the induced drag

k_winglet: float
Winglet effect tuning coefficient

k_cd: float
Total drag tuning coefficient

ground_altitude: float = 0.0
Altitude of ground w.r.t. sea level

modify_polar(polar: fastoad.models.performances.mission.polar.Polar, flight_point:
fastoad.model_base.flight_point.FlightPoint)→
fastoad.models.performances.mission.polar.Polar

Compute the ground effect based on altitude from ground and return an updated polar

Parameters
• polar – a Polar instance used as basis to apply ground effect

• flight_point – a flight point containing the flight conditions

for calculation of ground effect :return: a copy of polar with ground effect

1.6. fastoad 179

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

FAST-OAD, Release unknown

fastoad.models.performances.mission.routes module

Classes for computation of routes (i.e. assemblies of climb, cruise and descent phases).

class fastoad.models.performances.mission.routes.RangedRoute(name: str = '', _target: Op-
tional[fastoad.model_base.flight_point.FlightPoint]
= None, climb_phases:
List[fastoad.models.performances.mission.base.FlightSequence]
= <object object>, cruise_segment:
fas-
toad.models.performances.mission.segments.registered.cruise.CruiseSegment
= <object object>, descent_phases:
List[fastoad.models.performances.mission.base.FlightSequence]
= <object object>, flight_distance:
float = <object object>,
distance_accuracy: float = 500.0,
solve_distance: bool = True)

Bases: fastoad.models.performances.mission.base.FlightSequence

Computes a route so that it covers the specified ground distance.

The computed route will be made of:
• any number of climb phases

• one cruise segment

• any number of descent phases.

climb_phases: List[fastoad.models.performances.mission.base.FlightSequence] =
<object object>

Any number of flight phases that will occur before cruise.

cruise_segment:
fastoad.models.performances.mission.segments.registered.cruise.CruiseSegment =
<object object>

The cruise phase.

descent_phases: List[fastoad.models.performances.mission.base.FlightSequence] =
<object object>

Any number of flight phases that will occur after cruise.

flight_distance: float = <object object>
Target ground distance for whole route

distance_accuracy: float = 500.0
Accuracy on actual total ground distance for the solver. In meters

solve_distance: bool = True
If True, cruise distance will be adjusted to match flight_distance

property cruise_distance
Ground distance to be covered during cruise, as set in target of cruise_segment.

property cruise_speed: Optional[Tuple[str, float]]
Type (among true_airspeed, equivalent_airspeed and mach) and value of cruise speed.

compute_from(start: fastoad.model_base.flight_point.FlightPoint)→ pandas.core.frame.DataFrame
Computes a flight sequence from provided start point.

180 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

Parameters start – the initial flight point, defined for altitude, mass and speed
(true_airspeed, equivalent_airspeed or mach). Can also be defined for time and/or
ground_distance.

Returns a pandas DataFrame where column names match fields of FlightPoint

fastoad.models.performances.mission.util module

Utilities for mission computation.

fastoad.models.performances.mission.util.get_closest_flight_level(altitude, base_level=0,
level_step=10,
up_direction=True)

Computes the altitude (in meters) of a flight level close to provided altitude.

Flight levels are multiples of 100 feet.

see examples below:

>>> # Getting the IFR flight level immediately above
>>> get_closest_flight_level(4400. * foot)
5000.0
>>> # Getting the IFR flight level immediately below
>>> get_closest_flight_level(4400. * foot, up_direction=False)
4000.0
>>> # Getting the next even IFR flight level
>>> get_closest_flight_level(4400. * foot, level_step = 20)
6000.0
>>> # Getting the next odd IFR flight level
>>> get_closest_flight_level(3100. * foot, base_level=10, level_step = 20)
5000.0

Parameters
• altitude – in meters

• base_level – base flight level for computed steps

• level_step – number of flight level per step

• up_direction – True if next flight level is upper. False if lower

Returns the altitude in meters of the asked flight level.

Module contents

Performance module for mission simulation.

1.6. fastoad 181

FAST-OAD, Release unknown

Module contents

Package for performance modules.

Module contents

This package contains the OAD models of FAST-OAD.

It has to be declared as FAST-OAD plugin.

These models are based on following references:

fastoad.module_management package

Subpackages

Submodules

fastoad.module_management.constants module

The place for module-level constants.

class fastoad.module_management.constants.ModelDomain(value=<no_arg>, names=None,
module=None, type=None, start=1,
boundary=None)

Bases: aenum.Enum

Enumeration of model domains.

GEOMETRY = 'Geometry'

AERODYNAMICS = 'Aerodynamics'

HANDLING_QUALITIES = 'Handling Qualities'

WEIGHT = 'Weight'

PERFORMANCE = 'Performance'

PROPULSION = 'Propulsion'

OTHER = 'Other'

UNSPECIFIED = 'Unspecified'

182 Chapter 1. Contents

FAST-OAD, Release unknown

fastoad.module_management.exceptions module

Exceptions for module_management package.

exception fastoad.module_management.exceptions.FastBundleLoaderDuplicateFactoryError(factory_name:
str)

Bases: fastoad.exceptions.FastError

Raised when trying to register a factory with an already used name.

Parameters factory_name –

exception fastoad.module_management.exceptions.FastBundleLoaderUnknownFactoryNameError(factory_name:
str)

Bases: fastoad.exceptions.FastError

Raised when trying to instantiate a component from an unknown factory.

Parameters factory_name –

exception fastoad.module_management.exceptions.FastBadSystemOptionError(identifier,
option_names)

Bases: fastoad.exceptions.FastError

Raised when some option name is not conform to OpenMDAO system definition.

Parameters
• identifier – system identifier

• option_names – incorrect option names

exception fastoad.module_management.exceptions.FastIncompatibleServiceClassError(registered_class:
type, ser-
vice_id:
str,
base_class:
type)

Bases: fastoad.exceptions.FastError

Raised when trying to register as service a class that does not implement the specified interface.

Parameters
• registered_class –

• service_id –

• base_class – the unmatched interface

exception fastoad.module_management.exceptions.FastNoSubmodelFoundError(service_id: str)
Bases: fastoad.exceptions.FastError

Raised when a submodel is required, but none has been declared.

Parameters service_id –

exception fastoad.module_management.exceptions.FastTooManySubmodelsError(service_id: str,
candidates:
Sequence[str])

Bases: fastoad.exceptions.FastError

Raised when several candidates are declared for a required submodel, but none has been selected.

Parameters

1.6. fastoad 183

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#type
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#type
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

• service_id –

• candidates –

exception fastoad.module_management.exceptions.FastUnknownSubmodelError(service_id: str,
submodel_id: str,
submodel_ids:
List[str])

Bases: fastoad.exceptions.FastError

Raised when a submodel identifier is unknown for given required service.

Parameters
• service_id –

• submodel_id –

• submodel_ids –

exception fastoad.module_management.exceptions.FastNoDistPluginError
Bases: fastoad.exceptions.FastError

Raised when no installed package with FAST-OAD plugin is available.

exception fastoad.module_management.exceptions.FastUnknownDistPluginError(dist_name)
Bases: fastoad.exceptions.FastError

Raised when a distribution name is not found among distribution with FAST-OAD plugins.

exception fastoad.module_management.exceptions.FastSeveralDistPluginsError
Bases: fastoad.exceptions.FastError

Raised when no distribution name has been specified but several distribution with FAST-OAD plugins are avail-
able.

exception fastoad.module_management.exceptions.FastNoAvailableConfigurationFileError
Bases: fastoad.exceptions.FastError

Raised when a configuration file is asked, but none is available in plugins.

exception fastoad.module_management.exceptions.FastUnknownConfigurationFileError(configuration_file,
dist_name)

Bases: fastoad.exceptions.FastError

Raised when a configuration file is not found for named distribution.

exception fastoad.module_management.exceptions.FastSeveralConfigurationFilesError(dist_name)
Bases: fastoad.exceptions.FastError

Raised when no configuration file has been specified but several configuration files are provided with the distri-
bution.

exception fastoad.module_management.exceptions.FastNoAvailableSourceDataFileError
Bases: fastoad.exceptions.FastError

Raised when a source data file is requested, but none is available in plugins.

exception fastoad.module_management.exceptions.FastUnknownSourceDataFileError(source_data_file,
dist_name)

Bases: fastoad.exceptions.FastError

Raised when a source data file is not found for named distribution.

184 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

exception fastoad.module_management.exceptions.FastSeveralSourceDataFilesError(dist_name)
Bases: fastoad.exceptions.FastError

Raised when no source data file has been specified but several source data files are provided with the distribution.

fastoad.module_management.service_registry module

Module for registering services.

class fastoad.module_management.service_registry.RegisterService(service_id: str, provider_id:
str, desc=None)

Bases: object

Decorator class that allows to register services and associated providers.

This class also provides class methods for getting service providers and information about them.

The basic registering of a class is done with:

@RegisterService("my.service.id", "id.of.the.provider")
class MyService:

...

A child of this class may define a particular base class or interface that should be parent to all registered service
providers.

The definition of the base class is done when subclassing, e.g.:

class RegisterSomeService(RegisterService, base_class=ISomeService):
"Allows to register classes that implement interface ISomeService."

Parameters
• service_id – the identifier of the provided service

• provider_id – the identifier of the service provider to register

• desc – description of the service provider. If not provided, the docstring of decorated
class will be used.

get_properties(service_class: Type[fastoad.module_management.service_registry.T])→ dict
Override this method to modify the properties that will be associated to the registered service provider.

This basic version ensures the associated description property is the one provided when instantiating this
decorator class, if it is provided. Otherwise, it will be the docstring of the decorated class.

Parameters service_class – the class that will be registered as service provider

Returns the dictionary of properties that will be associated to the registered service provider

classmethod explore_folder(folder_path: str)
Explores provided folder and looks for service providers to register.

Parameters folder_path –

classmethod get_provider_ids(service_id: str)→ List[str]

Parameters service_id –

Returns the list of identifiers of providers of the service.

1.6. fastoad 185

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

classmethod get_provider(service_provider_id: str, options: Optional[dict] = None)→ Any
Instantiates the desired service provider.

Parameters
• service_provider_id – identifier of a registered service provider

• options – options that should be associated to the created instance

Returns the created instance

classmethod get_provider_description(instance_or_id: Union[str,
fastoad.module_management.service_registry.T])→ str

Parameters instance_or_id – an identifier or an instance of a registered service provider

Returns the description associated to given instance or identifier

classmethod get_provider_domain(instance_or_id: Union[str, openmdao.core.system.System])→
fastoad.module_management.constants.ModelDomain

Parameters instance_or_id – an identifier or an instance of a registered service provider

Returns the model domain associated to given instance or identifier

class fastoad.module_management.service_registry.RegisterSpecializedService(provider_id: str,
desc=None,
domain: Op-
tional[fastoad.module_management.constants.ModelDomain]
= None, options:
Optional[dict] =
None)

Bases: fastoad.module_management.service_registry.RegisterService

Base class for decorator classes that allow to register a particular service.

The service may be associated to a base class (or interface). The registered class must inherit from this base
class.

Unlike RegisterService, this class has to be subclassed, because the service identifier is defined when sub-
classing.

The definition of the base class is done by subclassing, e.g.:

class RegisterSomeService(RegisterSpecializedService,
base_class=ISomeService,
service_id="my.particularservice"):

"Allows to register classes that implement interface ISomeService."

Then basic registering of a class is done with:

@RegisterSomeService("my.particularservice.provider")
class ParticularService(ISomeService):

...

Parameters
• provider_id – the identifier of the service provider to register

• desc – description of the service. If not provided, the docstring will be used.

186 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

• domain – a category for the registered service provider

• options – a dictionary of options that can be associated to the service provider

service_id: str

get_properties(service_class: Type[fastoad.module_management.service_registry.T])→ dict
Override this method to modify the properties that will be associated to the registered service provider.

This basic version ensures the associated description property is the one provided when instantiating this
decorator class, if it is provided. Otherwise, it will be the docstring of the decorated class.

Parameters service_class – the class that will be registered as service provider

Returns the dictionary of properties that will be associated to the registered service provider

classmethod get_provider_ids()→ List[str]

Returns the list of identifiers of providers of the service.

class fastoad.module_management.service_registry.RegisterPropulsion(provider_id: str,
desc=None, domain: Op-
tional[fastoad.module_management.constants.ModelDomain]
= None, options:
Optional[dict] = None)

Bases: fastoad.module_management.service_registry._RegisterSpecializedOpenMDAOService

Decorator class for registering an OpenMDAO wrapper of a propulsion-dedicated model.

Parameters
• provider_id – the identifier of the service provider to register

• desc – description of the service. If not provided, the docstring will be used.

• domain – a category for the registered service provider

• options – a dictionary of options that can be associated to the service provider

service_id: str = 'fastoad.wrapper.propulsion'

class fastoad.module_management.service_registry.RegisterOpenMDAOSystem(provider_id: str,
desc=None, domain:
Op-
tional[fastoad.module_management.constants.ModelDomain]
= None, options:
Optional[dict] =
None)

Bases: fastoad.module_management.service_registry._RegisterSpecializedOpenMDAOService

Decorator class for registering an OpenMDAO system for use in FAST-OAD configuration.

If a variable_descriptions.txt file is in the same folder as the class module, its content is loaded (once, even if
several classes are registered at the same level).

Parameters
• provider_id – the identifier of the service provider to register

• desc – description of the service. If not provided, the docstring will be used.

• domain – a category for the registered service provider

• options – a dictionary of options that can be associated to the service provider

1.6. fastoad 187

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

service_id: str = 'fast.openmdao.system'

class fastoad.module_management.service_registry.RegisterSubmodel(service_id: str, provider_id:
str, desc=None, options:
Optional[dict] = None)

Bases: fastoad.module_management.service_registry._RegisterOpenMDAOService

Decorator class that allows to submodels.

Submodels are OpenMDAO systems that fulfill a requirement (service id) in a FAST-OAD module.

active_models defines the submodel to be used for any service identifier it has as key. See get_submodel()
for more details.

The registering of a class is done with:

@RegisterSubmodel("my.service", "id.of.the.provider")
class MyService:

...

Then the submodel can be instantiated and used with:

submodel_instance = RegisterSubmodel.get_submodel("my.service")
some_model.add_subsystem("my_submodel", submodel_instance, promotes=["*"])
...

Parameters
• service_id – the identifier of the provided service

• provider_id – the identifier of the service provider to register

• desc – description of the service. If not provided, the docstring will be used.

• options – a dictionary of options that will be defaults when instantiating the system

active_models: Dict[str, Optional[str]] = {}
Dictionary (key = service id, value=provider id) that defines submodels to be used for associated services.

classmethod get_submodel(service_id: str, options: Optional[dict] = None)
Provides a submodel for the given service identifier.

If active_models has service_id as key:
• if the associated value is a non-empty string, a submodel will be instantiated with this string as

submodel identifier. If the submodel identifier matches nothing, an error will be raised.

• if the associated value is None, an empty submodel (om.Group()) will be instantiated. You may
see it as a way to deactivate a particular submodel.

If active_models has service_id has NOT as key:
• if no submodel is declared for this service_id, an error will be raised.

• if one and only one submodel is declared for this service_id, it will be instantiated.

• if several submodels are declared for this service_id, an error will be raised.

If an actual (not empty) submodel is defined, provided options will be used.

Parameters
• service_id –

188 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

• options –

Returns the instantiated submodel

classmethod cancel_submodel_deactivations()
Reactivates all submodels that have been deactivated.

Module contents

Management of modules using Pelix/iPOPO

fastoad.openmdao package

Subpackages

fastoad.openmdao.variables package

Submodules

fastoad.openmdao.variables.variable module

Class for managing an OpenMDAO variable.

class fastoad.openmdao.variables.variable.Variable(name, **kwargs)
Bases: Hashable

A class for storing data of OpenMDAO variables.

Instantiation is expected to be done through keyword arguments only.

Beside the mandatory parameter ‘name, kwargs is expected to have keys ‘value’, ‘units’ and ‘desc’, that are
accessible respectively through properties name(), value(), units() and description().

Other keys are possible. They match the definition of OpenMDAO’s method Component.add_output() de-
scribed here.

These keys can be listed with class method get_openmdao_keys(). Any other key in kwargs will be silently
ignored.
Special behaviour: description() will return the content of kwargs[‘desc’] unless these 2 conditions are met:

• kwargs[‘desc’] is None or ‘desc’ key is missing

• a description exists in FAST-OAD internal data for the variable name

Then, the internal description will be returned by description()

Parameters kwargs – the attributes of the variable, as keyword arguments

name
Name of the variable

metadata: Dict
Dictionary for metadata of the variable

classmethod read_variable_descriptions(file_parent: str, update_existing: bool = True)
Reads variable descriptions in indicated folder or package, if it contains some.

The file variable_descriptions.txt is looked for. Nothing is done if it is not found (no error raised also).

1.6. fastoad 189

https://docs.python.org/3.9/library/typing.html#typing.Hashable
http://openmdao.org/twodocs/versions/latest/_srcdocs/packages/core/component.html#openmdao.core.component.Component.add_output
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

Each line of the file should be formatted like:

my:variable||The description of my:variable, as long as needed, but on one␣
→˓line.

Parameters
• file_parent – the folder path or the package name that should contain the file

• update_existing – if True, previous descriptions will be updated. if False, previous
descriptions will be erased.

classmethod update_variable_descriptions(variable_descriptions: Union[Mapping[str, str],
Iterable[Tuple[str, str]]])

Updates description of variables.

Parameters variable_descriptions – dict-like object with variable names as keys and
descriptions as values

classmethod get_openmdao_keys()

Returns the keys that are used in OpenMDAO variables

property value
value of the variable

property val
value of the variable (alias of property “value”)

property units
units associated to value (or None if not found)

property description
description of the variable (or None if not found)

property desc
description of the variable (or None if not found) (alias of property “description”)

property is_input
I/O status of the variable.

• True if variable is a problem input

• False if it is an output

• None if information not found

get_openmdao_kwargs(keys: Optional[Iterable] = None)→ dict
Provides a dict usable as keyword args by OpenMDAO add_input()/add_output().

The dict keys will be the ones provided, or a default set if no keys are provided.

Parameters keys –

Returns the kwargs dict

190 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

FAST-OAD, Release unknown

fastoad.openmdao.variables.variable_list module

Class for managing a list of OpenMDAO variables.

class fastoad.openmdao.variables.variable_list.VariableList(iterable=(), /)
Bases: list

Class for storing OpenMDAO variables.

A list of Variable instances, but items can also be accessed through variable names. It also has utilities to be
converted from/to some other data structures (python dict, OpenMDAO IndepVarComp, pandas DataFrame)

See documentation of Variable to see how to manipulate each element.

There are several ways for adding variables:

Assuming these Python variables are ready...
var_1 = Variable('var/1', value=0.)
metadata_2 = {'value': 1., 'units': 'm'}

... a VariableList instance can be populated like this:
vars_A = VariableList()
vars_A.append(var_1) # Adds directly a Variable instance
vars_A['var/2'] = metadata_2 # Adds the variable with given name and given␣
→˓metadata

Note: Adding a Variable instance with a name that is already in the VariableList instance will replace the
previous Variable instance instead of adding a new one.

It is also possible to instantiate a VariableList instance from another␣
→˓VariableList
instance or a simple list of Variable instances
vars_B = VariableList(vars_A)
vars_C = VariableList([var_1])

An existing VariableList instance can also receive the content of another␣
→˓VariableList
instance.
vars_C.update(vars_A) # variables in vars_A will overwrite variables␣
→˓with same

name in vars_C

After that, following equalities are True:

print(var_1 in vars_A)
print('var/1' in vars_A.names())
print('var/2' in vars_A.names())

names()→ List[str]

Returns names of variables

metadata_keys()→ List[str]

1.6. fastoad 191

https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

Returns the metadata keys that are common to all variables in the list

append(var: fastoad.openmdao.variables.variable.Variable)→ None
Append var to the end of the list, unless its name is already used. In that case, var will replace the previous
Variable instance with the same name.

update(other_var_list: list, add_variables: bool = True)
Uses variables in other_var_list to update the current VariableList instance.

For each Variable instance in other_var_list:
• if a Variable instance with same name exists, it is replaced by the one in other_var_list (special

case: if one in other_var_list has an empty description, the original description is kept)

• if not, Variable instance from other_var_list will be added only if add_variables==True

Parameters
• other_var_list – source for new Variable data

• add_variables – if True, unknown variables are also added

to_ivc()→ openmdao.core.indepvarcomp.IndepVarComp

Returns an OpenMDAO IndepVarComp instance with all variables from current list

to_dataframe()→ pandas.core.frame.DataFrame
Creates a DataFrame instance from a VariableList instance.

Column names are “name” + the keys returned by Variable.get_openmdao_keys(). Values in Series
“value” are floats or lists (numpy arrays are converted).

Returns a pandas DataFrame instance with all variables from current list

classmethod from_dict(var_dict: Union[Mapping[str, dict], Iterable[Tuple[str, dict]]])→
fastoad.openmdao.variables.variable_list.VariableList

Creates a VariableList instance from a dict-like object.

Parameters var_dict –

Returns a VariableList instance

classmethod from_ivc(ivc: openmdao.core.indepvarcomp.IndepVarComp)→
fastoad.openmdao.variables.variable_list.VariableList

Creates a VariableList instance from an OpenMDAO IndepVarComp instance

Parameters ivc – an IndepVarComp instance

Returns a VariableList instance

classmethod from_dataframe(df: pandas.core.frame.DataFrame)→
fastoad.openmdao.variables.variable_list.VariableList

Creates a VariableList instance from a pandas DataFrame instance.

The DataFrame instance is expected to have column names “name” + some keys among the ones given by
Variable.get_openmdao_keys().

Parameters df – a DataFrame instance

Returns a VariableList instance

192 Chapter 1. Contents

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

FAST-OAD, Release unknown

classmethod from_problem(problem: openmdao.core.problem.Problem, use_initial_values: bool = False,
get_promoted_names: bool = True, promoted_only: bool = True, io_status:
str = 'all')→ fastoad.openmdao.variables.variable_list.VariableList

Creates a VariableList instance containing inputs and outputs of an OpenMDAO Problem.

The inputs (is_input=True) correspond to the variables of IndepVarComp components and all the uncon-
nected input variables.

Note: Variables from _auto_ivc are ignored.

Parameters
• problem – OpenMDAO Problem instance to inspect

• use_initial_values – if True, or if problem has not been run, returned instance
will contain values before computation

• get_promoted_names – if True, promoted names will be returned instead of absolute
ones (if no promotion, absolute name will be returned)

• promoted_only – if True, only promoted variable names will be returned

• io_status – to choose with type of variable we return (“all”, “inputs, “outputs”)

Returns VariableList instance

classmethod from_unconnected_inputs(problem: openmdao.core.problem.Problem,
with_optional_inputs: bool = False)→
fastoad.openmdao.variables.variable_list.VariableList

Creates a VariableList instance containing unconnected inputs of an OpenMDAO Problem.

Warning: problem.setup() must have been run.

If optional_inputs is False, only inputs that have numpy.nan as default value (hence considered as manda-
tory) will be in returned instance. Otherwise, all unconnected inputs will be in returned instance.

Parameters
• problem – OpenMDAO Problem instance to inspect

• with_optional_inputs – If True, returned instance will contain all unconnected
inputs. Otherwise, it will contain only mandatory ones.

Returns VariableList instance

Module contents

Package for managing OpenMDAO variables

1.6. fastoad 193

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

Submodules

fastoad.openmdao.exceptions module

Module for custom Exception classes linked to OpenMDAO

exception fastoad.openmdao.exceptions.FASTOpenMDAONanInInputFile(input_file_path: str,
nan_variable_names:
List[str])

Bases: fastoad.exceptions.FastError

Raised if NaN values are read in input data file.

fastoad.openmdao.problem module

class fastoad.openmdao.problem.FASTOADProblem(*args, **kwargs)
Bases: openmdao.core.problem.Problem

Vanilla OpenMDAO Problem except that it can write its outputs to a file.

It also runs ValidityDomainChecker after each run_model() or run_driver() (but it does nothing if no
check has been registered).

Initialize attributes.

input_file_path
File path where read_inputs() will read inputs

output_file_path
File path where write_outputs() will write outputs

additional_variables
Variables that are not part of the problem but that should be written in output file.

run_model(case_prefix=None, reset_iter_counts=True)
Run the model by calling the root system’s solve_nonlinear.

Parameters
• case_prefix (str or None) – Prefix to prepend to coordinates when recording.

None means keep the preexisting prefix.

• reset_iter_counts (bool) – If True and model has been run previously, reset all
iteration counters.

run_driver(case_prefix=None, reset_iter_counts=True)
Run the driver on the model.

Parameters
• case_prefix (str or None) – Prefix to prepend to coordinates when recording.

None means keep the preexisting prefix.

• reset_iter_counts (bool) – If True and model has been run previously, reset all
iteration counters.

Returns Failure flag; True if failed to converge, False is successful.

Return type bool

setup(*args, **kwargs)
Set up the problem before run.

194 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

write_needed_inputs(source_file_path: Optional[str] = None, source_formatter:
Optional[fastoad.io.formatter.IVariableIOFormatter] = None)

Writes the input file of the problem using its unconnected inputs.

Written value of each variable will be taken:

1. from input_data if it contains the variable

2. from defined default values in component definitions

Parameters
• source_file_path – if provided, variable values will be read from it

• source_formatter – the class that defines format of input file. if not provided, ex-
pected format will be the default one.

write_outputs()
Writes all outputs in the configured output file.

read_inputs()
Reads inputs of the problem.

property analysis: fastoad.openmdao.problem.ProblemAnalysis
Information about inner structure of this problem.

The collected data (internally stored) are used in several steps of the computation.

This analysis is performed once. Each subsequent usage reuses the obtained data.

To ensure the analysis is run again, use reset_analysis().

reset_analysis()
Ensure a new problem analysis is done at new usage of analysis.

class fastoad.openmdao.problem.AutoUnitsDefaultGroup(**kwargs)
Bases: openmdao.core.group.Group

OpenMDAO group that automatically use self.set_input_defaults() to resolve declaration conflicts in variable
units.

Set the solvers to nonlinear and linear block Gauss–Seidel by default.

configure()
Configure this group to assign children settings.

This method may optionally be overidden by your Group’s method.

You may only use this method to change settings on your children subsystems. This includes setting solvers
in cases where you want to override the defaults.

You can assume that the full hierarchy below your level has been instantiated and has already called its
own configure methods.

Available attributes: name pathname comm options system hieararchy with attribute access

class fastoad.openmdao.problem.FASTOADModel(**kwargs)
Bases: fastoad.openmdao.problem.AutoUnitsDefaultGroup

OpenMDAO group that defines active submodels after the initialization of all its subsystems, and inherits from
AutoUnitsDefaultGroup for resolving declaration conflicts in variable units.

It allows to have a submodel choice in the initialize() method of a FAST-OAD module, but to possibly override
it with the definition of active_submodels (i.e. from the configuration file).

1.6. fastoad 195

https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

Set the solvers to nonlinear and linear block Gauss–Seidel by default.

active_submodels
Definition of active submodels that will be applied during setup()

setup()
Build this group.

This method should be overidden by your Group’s method. The reason for using this method to add
subsystem is to save memory and setup time when using your Group while running under MPI. This
avoids the creation of systems that will not be used in the current process.

You may call ‘add_subsystem’ to add systems to this group. You may also issue connections, and set the
linear and nonlinear solvers for this group level. You cannot safely change anything on children systems;
use the ‘configure’ method instead.

Available attributes: name pathname comm options

fastoad.openmdao.problem.get_variable_list_from_system(system: openmdao.core.system.System,
get_promoted_names: bool = True,
promoted_only: bool = True, io_status: str =
'all')→ fas-
toad.openmdao.variables.variable_list.VariableList

Creates a VariableList instance containing inputs and outputs of any OpenMDAO System.

Convenience method that creates a FASTOADProblem problem with only provided system and uses
from_problem().

class fastoad.openmdao.problem.ProblemAnalysis(problem: openmdao.core.problem.Problem)
Bases: object

Class for retrieving information about the input OpenMDAO problem.

At least one setup operation is done on a copy of the problem. Two setup operations will be done if the problem
has unfed dynamically shaped inputs.

problem: openmdao.core.problem.Problem
The analyzed problem

problem_variables: fastoad.openmdao.variables.variable_list.VariableList
All variables of the problem

dynamic_input_vars: fastoad.openmdao.variables.variable_list.VariableList
List variables that are inputs OF THE PROBLEM and dynamically shaped.

subsystem_order: list
Order of subsystems

ivc_var_names: list
Names of variables that are output of an IndepVarComp

analyze()
Gets information about inner structure of the associated problem.

fills_dynamically_shaped_inputs(problem: openmdao.core.problem.Problem)
Adds to the problem an IndepVarComp, that provides dummy variables to fit the dynamically shaped inputs
of the analyzed problem.

Adding this IVC to the problem will allow to complete the setup operation.

The input problem should be the analyzed problem or a copy of it.

196 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/stdtypes.html#list

FAST-OAD, Release unknown

fastoad.openmdao.validity_checker module

For checking validity domain of OpenMDAO variables.

class fastoad.openmdao.validity_checker.CheckRecord(variable_name, status, limit_value, limit_units,
value, value_units, source_file, logger_name)

Bases: tuple

A namedtuple that contains result of one variable check

limit_units
Alias for field number 3

limit_value
Alias for field number 2

logger_name
Alias for field number 7

source_file
Alias for field number 6

status
Alias for field number 1

value
Alias for field number 4

value_units
Alias for field number 5

variable_name
Alias for field number 0

class fastoad.openmdao.validity_checker.ValidityStatus(value)
Bases: enum.IntEnum

Simple enumeration for validity status.

OK = 0

TOO_LOW = -1

TOO_HIGH = 1

class fastoad.openmdao.validity_checker.ValidityDomainChecker(limits: Optional[Dict[str, tuple]] =
None, logger_name: Optional[str]
= None)

Bases: object

Decorator class that checks variable values against limit bounds

This class aims at producing a status of out of limits variables at the end of an OpenMDAO computation.

The point is to allow to define limit bounds when defining an OpenMDAO system, but to make the check on the
OpenMDAO problem after the run.

When defining an OpenMDAO system, use this class as Python decorator to define validity domains:

@ValidityDomainChecker
class MyComponent(om.ExplicitComponent):

...

1.6. fastoad 197

https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/enum.html#enum.IntEnum
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object

FAST-OAD, Release unknown

The above code will check values against lower and upper bounds that have been defined when adding OpenM-
DAO outputs.

Next code shows how to define lower and upper bounds, for inputs and/or outputs.

@ValidityDomainChecker(
{

"a:variable:with:two:bounds": (-10.0, 1.0),
"a:variable:with:lower:bound:only": (0.0, None),
"a:variable:with:upper:bound:only": (None, 4.2),

},
)
class MyComponent(om.ExplicitComponent):

...

The defined domain limits supersedes lower and upper bounds from OpenMDAO output definitions, but only in
the frame of ValidityDomainChecker. In any case, OpenMDAO process is not affected by usage of ValidityDo-
mainChecker.

Validity status can be obtained through log messages from Python logging module after problem has been run
with:

...
problem.run_model()
ValidityDomainChecker.check_problem_variables(problem)

Warnings: - Units of limit values defined in ValidityDomainChecker are assumed to be the

same as in add_input() and add_output() statements of decorated class

• Validity check currently only applies to scalar values

Parameters
• limits – a dictionary where keys are variable names and values are two-values tuples

that give lower and upper bound. One bound can be set to None.

• logger_name – The named of the logger that will be used. If not provided, name of
current module (i.e. “__name__””) will be used.

classmethod check_problem_variables(problem: openmdao.core.problem.Problem)→
List[fastoad.openmdao.validity_checker.CheckRecord]

Checks variable values in provided problem.

Logs warnings for each variable that is out of registered limits.

problem.setup() must have been run.

Parameters problem –

Returns the list of checks

classmethod check_variables(variables: fastoad.openmdao.variables.variable_list.VariableList,
activated_only: bool = True)→
List[fastoad.openmdao.validity_checker.CheckRecord]

Check values of provided variables against registered limits.

Parameters
• variables –

198 Chapter 1. Contents

https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

• activated_only – if True, only activated checkers are considered.

Returns the list of checks

static log_records(records: List[fastoad.openmdao.validity_checker.CheckRecord])
Logs warnings through Python logging module for each CheckRecord in provided list if it is not OK.

Parameters records –

Returns

fastoad.openmdao.whatsopt module

WhatsOpt-related operations.

fastoad.openmdao.whatsopt.write_xdsm(problem: openmdao.core.problem.Problem, xdsm_file_path:
Optional[str] = None, depth: int = 2, wop_server_url: Optional[str]
= None, dry_run: bool = False)

Makes WhatsOpt generate a XDSM in HTML file.

Parameters
• problem – a Problem instance. final_setup() must have been run.

• xdsm_file_path – the path for HTML file to be written (will overwrite if needed)

• depth – the depth analysis for WhatsOpt

• wop_server_url – URL of WhatsOpt server (if None, ether.onera.fr/whatsopt will be
used)

• dry_run – if True, will run wop without sending any request to the server. Generated
XDSM will be empty. (for test purpose only)

Module contents

fastoad.source_data_files package

Module contents

Submodules

fastoad.api module

This module gathers key FAST-OAD classes and functions for convenient import.

1.6. fastoad 199

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool

FAST-OAD, Release unknown

fastoad.constants module

Definition of globally used constants.

class fastoad.constants.FlightPhase(value=<no_arg>, names=None, module=None, type=None, start=1,
boundary=None)

Bases: aenum.Enum

Enumeration of flight phases.

TAXI_OUT = 'taxi_out'

TAKEOFF = 'takeoff'

INITIAL_CLIMB = 'initial_climb'

CLIMB = 'climb'

CRUISE = 'cruise'

DESCENT = 'descent'

LANDING = 'landing'

TAXI_IN = 'taxi_in'

class fastoad.constants.EngineSetting(value=<no_arg>, names=None, module=None, type=None,
start=1, boundary=None)

Bases: aenum.IntEnum

Enumeration of engine settings.

classmethod convert(name: str)→ fastoad.constants.EngineSetting

Parameters name –

Returns the EngineSetting instance that matches the provided name (case-insensitive)

TAKEOFF = 1

CLIMB = 2

CRUISE = 3

IDLE = 4

class fastoad.constants.RangeCategory(value=<no_arg>, names=None, module=None, type=None,
start=1, boundary=None)

Bases: aenum.Enum

Definition of lower and upper limits of aircraft range categories, in Nautical Miles.

can be used like:

>>> range_value = 800.
>>> range_value in RangeCategory.SHORT
True

which is equivalent to:

>>> RangeCategory.SHORT.min() <= range_value <= RangeCategory.SHORT.max()

SHORT = (0.0, 1500.0)

200 Chapter 1. Contents

https://docs.python.org/3.9/library/stdtypes.html#str

FAST-OAD, Release unknown

SHORT_MEDIUM = (1500.0, 3000.0)

MEDIUM = (3000.0, 4500.0)

LONG = (4500.0, 6000.0)

VERY_LONG = (6000.0, 1000000.0)

min()

Returns minimum range in category

max()

Returns maximum range in category

fastoad.exceptions module

Module for custom Exception classes

exception fastoad.exceptions.FastError
Bases: Exception

Base Class for exceptions related to the FAST framework.

exception fastoad.exceptions.NoSetupError
Bases: fastoad.exceptions.FastError

No Setup Error.

This exception indicates that a setup of the OpenMDAO instance has not been done, but was expected to be.

exception fastoad.exceptions.XMLReadError
Bases: fastoad.exceptions.FastError

XML file read Error.

This exception indicates that an error occurred when reading an xml file.

exception fastoad.exceptions.FastUnknownEngineSettingError
Bases: fastoad.exceptions.FastError

Raised when an unknown engine setting code has been encountered

exception fastoad.exceptions.FastUnexpectedKeywordArgument(bad_keyword)
Bases: fastoad.exceptions.FastError

Raised when an instantiation is done with an incorrect keyword argument.

Module contents

1.6. fastoad 201

https://docs.python.org/3.9/library/exceptions.html#Exception

FAST-OAD, Release unknown

202 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

203

FAST-OAD, Release unknown

204 Chapter 2. Indices and tables

BIBLIOGRAPHY

[GHM+19] Justin S. Gray, John T. Hwang, Joaquim R. R. A. Martins, Kenneth T. Moore, and Bret A. Naylor. OpenM-
DAO: an open-source framework for multidisciplinary design, analysis, and optimization. Structural and
Multidisciplinary Optimization, 59(4):1075–1104, April 2019. doi:10.1007/s00158-019-02211-z.

205

https://doi.org/10.1007/s00158-019-02211-z

FAST-OAD, Release unknown

206 Bibliography

PYTHON MODULE INDEX

f
fastoad, 201
fastoad.api, 199
fastoad.cmd, 84
fastoad.cmd.api, 80
fastoad.cmd.cli, 83
fastoad.cmd.cli_utils, 83
fastoad.cmd.exceptions, 84
fastoad.configurations, 84
fastoad.constants, 200
fastoad.exceptions, 201
fastoad.gui, 89
fastoad.gui.analysis_and_plots, 84
fastoad.gui.exceptions, 87
fastoad.gui.mission_viewer, 87
fastoad.gui.optimization_viewer, 87
fastoad.gui.variable_viewer, 88
fastoad.io, 98
fastoad.io.configuration, 92
fastoad.io.configuration.configuration, 89
fastoad.io.configuration.exceptions, 91
fastoad.io.formatter, 96
fastoad.io.variable_io, 97
fastoad.io.xml, 96
fastoad.io.xml.constants, 92
fastoad.io.xml.exceptions, 92
fastoad.io.xml.translator, 93
fastoad.io.xml.variable_io_base, 94
fastoad.io.xml.variable_io_legacy, 95
fastoad.io.xml.variable_io_standard, 95
fastoad.model_base, 107
fastoad.model_base.atmosphere, 98
fastoad.model_base.datacls, 100
fastoad.model_base.flight_point, 100
fastoad.model_base.propulsion, 104
fastoad.models, 182
fastoad.models.performances, 182
fastoad.models.performances.mission, 181
fastoad.models.performances.mission.base, 174
fastoad.models.performances.mission.exceptions,

176

fastoad.models.performances.mission.mission,
176

fastoad.models.performances.mission.mission_definition,
119

fastoad.models.performances.mission.mission_definition.exceptions,
118

fastoad.models.performances.mission.mission_definition.mission_builder,
118

fastoad.models.performances.mission.mission_definition.mission_builder.constants,
107

fastoad.models.performances.mission.mission_definition.mission_builder.input_definition,
108

fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder,
111

fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders,
113

fastoad.models.performances.mission.mission_definition.schema,
118

fastoad.models.performances.mission.openmdao,
126

fastoad.models.performances.mission.openmdao.base,
119

fastoad.models.performances.mission.openmdao.link_mtow,
120

fastoad.models.performances.mission.openmdao.mission,
120

fastoad.models.performances.mission.openmdao.mission_run,
121

fastoad.models.performances.mission.openmdao.mission_wrapper,
123

fastoad.models.performances.mission.openmdao.payload_range,
124

fastoad.models.performances.mission.polar,
177

fastoad.models.performances.mission.polar_modifier,
178

fastoad.models.performances.mission.routes,
180

fastoad.models.performances.mission.segments,
174

fastoad.models.performances.mission.segments.base,
157

207

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments.macro_segments,
160

fastoad.models.performances.mission.segments.registered,
157

fastoad.models.performances.mission.segments.registered.altitude_change,
134

fastoad.models.performances.mission.segments.registered.cruise,
137

fastoad.models.performances.mission.segments.registered.ground_speed_change,
145

fastoad.models.performances.mission.segments.registered.hold,
147

fastoad.models.performances.mission.segments.registered.mass_input,
149

fastoad.models.performances.mission.segments.registered.speed_change,
150

fastoad.models.performances.mission.segments.registered.start,
152

fastoad.models.performances.mission.segments.registered.takeoff,
133

fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff,
126

fastoad.models.performances.mission.segments.registered.takeoff.rotation,
129

fastoad.models.performances.mission.segments.registered.takeoff.takeoff,
131

fastoad.models.performances.mission.segments.registered.taxi,
153

fastoad.models.performances.mission.segments.registered.transition,
155

fastoad.models.performances.mission.segments.time_step_base,
161

fastoad.models.performances.mission.util, 181
fastoad.module_management, 189
fastoad.module_management.constants, 182
fastoad.module_management.exceptions, 183
fastoad.module_management.service_registry,

185
fastoad.openmdao, 199
fastoad.openmdao.exceptions, 194
fastoad.openmdao.problem, 194
fastoad.openmdao.validity_checker, 197
fastoad.openmdao.variables, 193
fastoad.openmdao.variables.variable, 189
fastoad.openmdao.variables.variable_list, 191
fastoad.openmdao.whatsopt, 199
fastoad.source_data_files, 199

208 Python Module Index

INDEX

A
AbstractFixedDurationSegment (class in fas-

toad.models.performances.mission.segments.time_step_base),
168

AbstractFlightSegment (class in fas-
toad.models.performances.mission.segments.base),
158

AbstractFuelPropulsion (class in fas-
toad.model_base.propulsion), 106

AbstractGroundSegment (class in fas-
toad.models.performances.mission.segments.time_step_base),
172

AbstractManualThrustSegment (class in fas-
toad.models.performances.mission.segments.time_step_base),
164

AbstractPolarModifier (class in fas-
toad.models.performances.mission.polar_modifier),
178

AbstractRegulatedThrustSegment (class in fas-
toad.models.performances.mission.segments.time_step_base),
166

AbstractStructureBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
113

AbstractTakeOffSegment (class in fas-
toad.models.performances.mission.segments.time_step_base),
170

AbstractTimeStepFlightSegment (class in fas-
toad.models.performances.mission.segments.time_step_base),
161

acceleration (fastoad.model_base.flight_point.FlightPoint
attribute), 102

active_models (fastoad.module_management.service_registry.RegisterSubmodel
attribute), 188

active_submodels (fas-
toad.openmdao.problem.FASTOADModel
attribute), 196

add_field() (fastoad.model_base.flight_point.FlightPoint
class method), 103

add_mission() (fastoad.gui.mission_viewer.MissionViewer
method), 87

add_segment() (fastoad.models.performances.mission.segments.base.SegmentDefinitions

class method), 157
additional_variables (fas-

toad.openmdao.problem.FASTOADProblem
attribute), 194

AdvancedMissionComp (class in fas-
toad.models.performances.mission.openmdao.mission_run),
122

AERODYNAMICS (fastoad.module_management.constants.ModelDomain
attribute), 182

aircraft_geometry_plot() (in module fas-
toad.gui.analysis_and_plots), 85

alpha (fastoad.model_base.flight_point.FlightPoint at-
tribute), 102

alpha_limit (fastoad.models.performances.mission.segments.registered.takeoff.rotation.RotationSegment
attribute), 131

altitude (fastoad.model_base.atmosphere.AtmosphereSI
property), 100

altitude (fastoad.model_base.flight_point.FlightPoint
attribute), 101

altitude_bounds (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

AltitudeChangeSegment (class in fas-
toad.models.performances.mission.segments.registered.altitude_change),
134

analysis (fastoad.openmdao.problem.FASTOADProblem
property), 195

analyze() (fastoad.openmdao.problem.ProblemAnalysis
method), 196

append() (fastoad.models.performances.mission.base.FlightSequence
method), 175

append() (fastoad.openmdao.variables.variable_list.VariableList
method), 192

Atmosphere (class in fastoad.model_base.atmosphere),
98

AtmosphereSI (class in fas-
toad.model_base.atmosphere), 99

AutoUnitsDefaultGroup (class in fas-
toad.openmdao.problem), 195

B
BaseDataClass (class in fastoad.model_base.datacls),

209

FAST-OAD, Release unknown

100
BaseMissionComp (class in fas-

toad.models.performances.mission.openmdao.base),
119

BaseOMPropulsionComponent (class in fas-
toad.model_base.propulsion), 105

BasicVarXpathTranslator (class in fas-
toad.io.xml.variable_io_standard), 96

BreguetCruiseSegment (class in fas-
toad.models.performances.mission.segments.registered.cruise),
143

build() (fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 112

build_sequence() (fas-
toad.models.performances.mission.segments.macro_segments.MacroSegmentBase
method), 160

build_sequence() (fas-
toad.models.performances.mission.segments.registered.takeoff.takeoff.TakeOffSequence
method), 133

burned_fuel_variable (fas-
toad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
property), 121

C
cancel_submodel_deactivations() (fas-

toad.module_management.service_registry.RegisterSubmodel
class method), 189

CD (fastoad.model_base.flight_point.FlightPoint at-
tribute), 102

cd() (fastoad.models.performances.mission.polar.Polar
method), 178

check_problem_variables() (fas-
toad.openmdao.validity_checker.ValidityDomainChecker
class method), 198

check_variables() (fas-
toad.openmdao.validity_checker.ValidityDomainChecker
class method), 198

CheckRecord (class in fas-
toad.openmdao.validity_checker), 197

CL (fastoad.model_base.flight_point.FlightPoint at-
tribute), 102

cl() (fastoad.models.performances.mission.polar.Polar
method), 178

clear() (fastoad.models.performances.mission.base.FlightSequence
method), 175

CLIMB (fastoad.constants.EngineSetting attribute), 200
CLIMB (fastoad.constants.FlightPhase attribute), 200
climb_phases (fastoad.models.performances.mission.routes.RangedRoute

attribute), 180
climb_segment (fastoad.models.performances.mission.segments.registered.cruise.ClimbAndCruiseSegment

attribute), 143
ClimbAndCruiseSegment (class in fas-

toad.models.performances.mission.segments.registered.cruise),
141

cls_sequence (fastoad.models.performances.mission.segments.macro_segments.MacroSegmentBase
attribute), 160

cls_sequence (fastoad.models.performances.mission.segments.registered.takeoff.takeoff.TakeOffSequence
attribute), 133

complete_flight_point() (fas-
toad.models.performances.mission.segments.base.AbstractFlightSegment
method), 159

complete_flight_point() (fas-
toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
method), 128

complete_flight_point() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractGroundSegment
method), 174

complete_flight_point() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 164

complete_flight_point_from() (fas-
toad.models.performances.mission.segments.base.AbstractFlightSegment
static method), 159

compute() (fastoad.model_base.propulsion.BaseOMPropulsionComponent
method), 105

compute() (fastoad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
method), 121

compute() (fastoad.models.performances.mission.openmdao.mission_run.AdvancedMissionComp
method), 122

compute() (fastoad.models.performances.mission.openmdao.mission_run.MissionComp
method), 122

compute() (fastoad.models.performances.mission.openmdao.mission_wrapper.MissionWrapper
method), 124

compute() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeContourInputValues
method), 125

compute() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeGridInputValues
method), 125

compute_flight_points() (fas-
toad.model_base.propulsion.FuelEngineSet
method), 106

compute_flight_points() (fas-
toad.model_base.propulsion.IPropulsion
method), 104

compute_from() (fas-
toad.models.performances.mission.base.FlightSequence
method), 175

compute_from() (fas-
toad.models.performances.mission.base.IFlightPart
method), 174

compute_from() (fas-
toad.models.performances.mission.mission.Mission
method), 177

compute_from() (fas-
toad.models.performances.mission.routes.RangedRoute
method), 180

compute_from() (fas-
toad.models.performances.mission.segments.base.AbstractFlightSegment
method), 158

210 Index

FAST-OAD, Release unknown

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.base.AbstractFlightSegment
method), 158

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
method), 136

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.cruise.BreguetCruiseSegment
method), 145

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.cruise.ClimbAndCruiseSegment
method), 143

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.cruise.OptimalCruiseSegment
method), 141

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.mass_input.MassTargetSegment
method), 149

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.start.Start
method), 152

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.taxi.TaxiSegment
method), 155

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.registered.transition.DummyTransitionSegment
method), 156

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTakeOffSegment
method), 172

compute_from_start_to_target() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 164

compute_next_flight_point() (fas-
toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
method), 128

compute_next_flight_point() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 164

compute_next_gamma() (fas-
toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
static method), 128

compute_propulsion() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractManualThrustSegment
method), 166

compute_propulsion() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractRegulatedThrustSegment
method), 168

compute_propulsion() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 163

ComputeMTOW (class in fas-
toad.models.performances.mission.openmdao.link_mtow),
120

CONFIGURATION (fastoad.cmd.api.UserFileType at-
tribute), 80

configure() (fastoad.openmdao.problem.AutoUnitsDefaultGroup
method), 195

CONSTANT_VALUE (fastoad.models.performances.mission.segments.base.AbstractFlightSegment
attribute), 158

consume_fuel() (fas-
toad.models.performances.mission.segments.base.AbstractFlightSegment
static method), 159

consumed_fuel (fastoad.model_base.flight_point.FlightPoint
attribute), 102

consumed_fuel (fastoad.models.performances.mission.mission.Mission
property), 177

consumed_mass_before_input_weight (fas-
toad.models.performances.mission.base.FlightSequence
attribute), 175

convert() (fastoad.constants.EngineSetting class
method), 200

create() (fastoad.model_base.flight_point.FlightPoint
class method), 103

create_list() (fastoad.model_base.flight_point.FlightPoint
class method), 103

CRUISE (fastoad.constants.EngineSetting attribute), 200
CRUISE (fastoad.constants.FlightPhase attribute), 200
cruise_distance (fas-

toad.models.performances.mission.routes.RangedRoute
property), 180

cruise_segment (fas-
toad.models.performances.mission.routes.RangedRoute
attribute), 180

cruise_speed (fastoad.models.performances.mission.routes.RangedRoute
property), 180

CruiseSegment (class in fas-
toad.models.performances.mission.segments.registered.cruise),
137

D
DataFile (class in fastoad.io.variable_io), 97
dataframe (fastoad.gui.optimization_viewer.OptimizationViewer

attribute), 87
dataframe (fastoad.gui.variable_viewer.VariableViewer

attribute), 88
DEFAULT_IO_ATTRIBUTE (in module fas-

toad.io.xml.constants), 92
DEFAULT_UNIT_ATTRIBUTE (in module fas-

toad.io.xml.constants), 92
default_value (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition

attribute), 110
DefaultStructureBuilder (class in fas-

toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
114

definition (fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
property), 112

Index 211

FAST-OAD, Release unknown

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
attribute), 114

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.DefaultStructureBuilder
attribute), 115

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.MissionStructureBuilder
attribute), 118

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PhaseStructureBuilder
attribute), 116

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PolarStructureBuilder
attribute), 115

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.RouteStructureBuilder
attribute), 117

definition (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.SegmentStructureBuilder
attribute), 116

definition_alpha (fas-
toad.models.performances.mission.polar.Polar
property), 177

definition_cd (fastoad.models.performances.mission.polar.Polar
property), 177

definition_cl (fastoad.models.performances.mission.polar.Polar
property), 177

delta_t (fastoad.model_base.atmosphere.Atmosphere
property), 99

density (fastoad.model_base.atmosphere.Atmosphere
property), 99

desc (fastoad.openmdao.variables.variable.Variable
property), 190

DESCENT (fastoad.constants.FlightPhase attribute), 200
descent_phases (fas-

toad.models.performances.mission.routes.RangedRoute
attribute), 180

description (fastoad.openmdao.variables.variable.Variable
property), 190

display() (fastoad.gui.mission_viewer.MissionViewer
method), 87

display() (fastoad.gui.optimization_viewer.OptimizationViewer
method), 87

display() (fastoad.gui.variable_viewer.VariableViewer
method), 89

distance_accuracy (fas-
toad.models.performances.mission.routes.RangedRoute
attribute), 180

drag (fastoad.model_base.flight_point.FlightPoint
attribute), 102

drag_polar_plot() (in module fas-
toad.gui.analysis_and_plots), 85

DummyTransitionSegment (class in fas-
toad.models.performances.mission.segments.registered.transition),
155

dynamic_input_vars (fas-
toad.openmdao.problem.ProblemAnalysis
attribute), 196

E
end_time_step (fastoad.models.performances.mission.segments.registered.takeoff.takeoff.TakeOffSequence

attribute), 133
EndOfTakeoffSegment (class in fas-

toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff),
126

engine_setting (fas-
toad.model_base.flight_point.FlightPoint
attribute), 102

engine_setting (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

EngineSetting (class in fastoad.constants), 200
equivalent_airspeed (fas-

toad.model_base.atmosphere.Atmosphere
property), 99

equivalent_airspeed (fas-
toad.model_base.flight_point.FlightPoint
attribute), 102

evaluate_problem() (in module fastoad.cmd.api), 82
explore_folder() (fas-

toad.module_management.service_registry.RegisterService
class method), 185

extend() (fastoad.models.performances.mission.base.FlightSequence
method), 175

F
FastBadSystemOptionError, 183
FastBundleLoaderDuplicateFactoryError, 183
FastBundleLoaderUnknownFactoryNameError, 183
FASTConfigurationBadOpenMDAOInstructionError,

91
FASTConfigurationBaseKeyBuildingError, 91
FastError, 201
FastFlightPointUnexpectedKeywordArgument, 176
FastFlightSegmentIncompleteFlightPoint, 176
FastFlightSegmentUnexpectedKeywordArgument,

176
FastIncompatibleServiceClassError, 183
FastMissingFile, 87
FastMissionFileMissingMissionNameError, 118
FastNoAvailableConfigurationFileError, 184
FastNoAvailableNotebookError, 84
FastNoAvailableSourceDataFileError, 184
FastNoDistPluginError, 184
FastNoSubmodelFoundError, 183
fastoad

module, 201
fastoad.api

module, 199
fastoad.cmd

module, 84
fastoad.cmd.api

module, 80

212 Index

FAST-OAD, Release unknown

fastoad.cmd.cli
module, 83

fastoad.cmd.cli_utils
module, 83

fastoad.cmd.exceptions
module, 84

fastoad.configurations
module, 84

fastoad.constants
module, 200

fastoad.exceptions
module, 201

fastoad.gui
module, 89

fastoad.gui.analysis_and_plots
module, 84

fastoad.gui.exceptions
module, 87

fastoad.gui.mission_viewer
module, 87

fastoad.gui.optimization_viewer
module, 87

fastoad.gui.variable_viewer
module, 88

fastoad.io
module, 98

fastoad.io.configuration
module, 92

fastoad.io.configuration.configuration
module, 89

fastoad.io.configuration.exceptions
module, 91

fastoad.io.formatter
module, 96

fastoad.io.variable_io
module, 97

fastoad.io.xml
module, 96

fastoad.io.xml.constants
module, 92

fastoad.io.xml.exceptions
module, 92

fastoad.io.xml.translator
module, 93

fastoad.io.xml.variable_io_base
module, 94

fastoad.io.xml.variable_io_legacy
module, 95

fastoad.io.xml.variable_io_standard
module, 95

fastoad.model_base
module, 107

fastoad.model_base.atmosphere
module, 98

fastoad.model_base.datacls
module, 100

fastoad.model_base.flight_point
module, 100

fastoad.model_base.propulsion
module, 104

fastoad.models
module, 182

fastoad.models.performances
module, 182

fastoad.models.performances.mission
module, 181

fastoad.models.performances.mission.base
module, 174

fastoad.models.performances.mission.exceptions
module, 176

fastoad.models.performances.mission.mission
module, 176

fastoad.models.performances.mission.mission_definition
module, 119

fastoad.models.performances.mission.mission_definition.exceptions
module, 118

fastoad.models.performances.mission.mission_definition.mission_builder
module, 118

fastoad.models.performances.mission.mission_definition.mission_builder.constants
module, 107

fastoad.models.performances.mission.mission_definition.mission_builder.input_definition
module, 108

fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder
module, 111

fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders
module, 113

fastoad.models.performances.mission.mission_definition.schema
module, 118

fastoad.models.performances.mission.openmdao
module, 126

fastoad.models.performances.mission.openmdao.base
module, 119

fastoad.models.performances.mission.openmdao.link_mtow
module, 120

fastoad.models.performances.mission.openmdao.mission
module, 120

fastoad.models.performances.mission.openmdao.mission_run
module, 121

fastoad.models.performances.mission.openmdao.mission_wrapper
module, 123

fastoad.models.performances.mission.openmdao.payload_range
module, 124

fastoad.models.performances.mission.polar
module, 177

fastoad.models.performances.mission.polar_modifier
module, 178

fastoad.models.performances.mission.routes
module, 180

Index 213

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments
module, 174

fastoad.models.performances.mission.segments.base
module, 157

fastoad.models.performances.mission.segments.macro_segments
module, 160

fastoad.models.performances.mission.segments.registered
module, 157

fastoad.models.performances.mission.segments.registered.altitude_change
module, 134

fastoad.models.performances.mission.segments.registered.cruise
module, 137

fastoad.models.performances.mission.segments.registered.ground_speed_change
module, 145

fastoad.models.performances.mission.segments.registered.hold
module, 147

fastoad.models.performances.mission.segments.registered.mass_input
module, 149

fastoad.models.performances.mission.segments.registered.speed_change
module, 150

fastoad.models.performances.mission.segments.registered.start
module, 152

fastoad.models.performances.mission.segments.registered.takeoff
module, 133

fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff
module, 126

fastoad.models.performances.mission.segments.registered.takeoff.rotation
module, 129

fastoad.models.performances.mission.segments.registered.takeoff.takeoff
module, 131

fastoad.models.performances.mission.segments.registered.taxi
module, 153

fastoad.models.performances.mission.segments.registered.transition
module, 155

fastoad.models.performances.mission.segments.time_step_base
module, 161

fastoad.models.performances.mission.util
module, 181

fastoad.module_management
module, 189

fastoad.module_management.constants
module, 182

fastoad.module_management.exceptions
module, 183

fastoad.module_management.service_registry
module, 185

fastoad.openmdao
module, 199

fastoad.openmdao.exceptions
module, 194

fastoad.openmdao.problem
module, 194

fastoad.openmdao.validity_checker
module, 197

fastoad.openmdao.variables
module, 193

fastoad.openmdao.variables.variable
module, 189

fastoad.openmdao.variables.variable_list
module, 191

fastoad.openmdao.whatsopt
module, 199

fastoad.source_data_files
module, 199

FASTOADModel (class in fastoad.openmdao.problem),
195

FASTOADProblem (class in fastoad.openmdao.problem),
194

FASTOADProblemConfigurator (class in fas-
toad.io.configuration.configuration), 89

FASTOpenMDAONanInInputFile, 194
FastPathExistsError, 84
FastSeveralConfigurationFilesError, 184
FastSeveralDistPluginsError, 184
FastSeveralSourceDataFilesError, 184
FastTooManySubmodelsError, 183
FastUnexpectedKeywordArgument, 201
FastUnknownConfigurationFileError, 184
FastUnknownDistPluginError, 184
FastUnknownEngineSettingError, 201
FastUnknownMissionElementError, 176
FastUnknownSourceDataFileError, 184
FastUnknownSubmodelError, 184
FastXmlFormatterDuplicateVariableError, 93
FastXPathEvalError, 92
FastXpathTranslatorDuplicates, 92
FastXpathTranslatorInconsistentLists, 92
FastXpathTranslatorVariableError, 92
FastXpathTranslatorXPathError, 93
file (fastoad.gui.variable_viewer.VariableViewer

attribute), 88
file_path (fastoad.io.variable_io.DataFile property),

98
fills_dynamically_shaped_inputs() (fas-

toad.openmdao.problem.ProblemAnalysis
method), 196

first_route (fastoad.models.performances.mission.mission.Mission
property), 177

first_route_name (fas-
toad.models.performances.mission.openmdao.base.BaseMissionComp
property), 119

flight_distance (fas-
toad.models.performances.mission.routes.RangedRoute
attribute), 180

flight_points (fastoad.models.performances.mission.openmdao.mission.OMMission
property), 121

FlightPhase (class in fastoad.constants), 200

214 Index

FAST-OAD, Release unknown

FlightPoint (class in fastoad.model_base.flight_point),
100

FlightSegment (class in fas-
toad.models.performances.mission.segments.time_step_base),
174

FlightSequence (class in fas-
toad.models.performances.mission.base),
175

force_all_block_fuel_usage() (fas-
toad.models.performances.mission.mission_definition.schema.MissionDefinition
method), 118

force_all_block_fuel_usage() (fas-
toad.models.performances.mission.openmdao.mission_wrapper.MissionWrapper
method), 124

formatter (fastoad.io.variable_io.DataFile property),
98

from_dataframe() (fas-
toad.openmdao.variables.variable_list.VariableList
class method), 192

from_dict() (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
class method), 110

from_dict() (fastoad.openmdao.variables.variable_list.VariableList
class method), 192

from_ivc() (fastoad.openmdao.variables.variable_list.VariableList
class method), 192

from_problem() (fas-
toad.openmdao.variables.variable_list.VariableList
class method), 192

from_unconnected_inputs() (fas-
toad.openmdao.variables.variable_list.VariableList
class method), 193

fuel_accuracy (fastoad.models.performances.mission.mission.Mission
attribute), 177

FuelEngineSet (class in fas-
toad.model_base.propulsion), 106

G
generate_configuration_file() (in module fas-

toad.cmd.api), 80
generate_inputs() (in module fastoad.cmd.api), 81
generate_notebooks() (in module fastoad.cmd.api),

80
generate_source_data_file() (in module fas-

toad.cmd.api), 80
GEOMETRY (fastoad.module_management.constants.ModelDomain

attribute), 182
get_altitude() (fas-

toad.model_base.atmosphere.Atmosphere
method), 99

get_class() (fastoad.models.performances.mission.base.RegisterElement
class method), 176

get_classes() (fastoad.models.performances.mission.base.RegisterElement
class method), 176

get_closest_flight_level() (in module fas-
toad.models.performances.mission.util), 181

get_consumed_mass() (fas-
toad.model_base.propulsion.AbstractFuelPropulsion
method), 106

get_consumed_mass() (fas-
toad.model_base.propulsion.IPropulsion
method), 105

get_distance_to_target() (fas-
toad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
method), 136

get_distance_to_target() (fas-
toad.models.performances.mission.segments.registered.cruise.CruiseSegment
method), 139

get_distance_to_target() (fas-
toad.models.performances.mission.segments.registered.ground_speed_change.GroundSpeedChangeSegment
method), 147

get_distance_to_target() (fas-
toad.models.performances.mission.segments.registered.speed_change.SpeedChangeSegment
method), 152

get_distance_to_target() (fas-
toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
method), 128

get_distance_to_target() (fas-
toad.models.performances.mission.segments.registered.takeoff.rotation.RotationSegment
method), 131

get_distance_to_target() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractFixedDurationSegment
method), 170

get_distance_to_target() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 163

get_engine_wrapper() (fas-
toad.models.performances.mission.openmdao.mission_run.MissionComp
method), 122

get_field_names() (fas-
toad.model_base.flight_point.FlightPoint
class method), 103

get_gamma_and_acceleration() (fas-
toad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
method), 137

get_gamma_and_acceleration() (fas-
toad.models.performances.mission.segments.registered.speed_change.SpeedChangeSegment
method), 152

get_gamma_and_acceleration() (fas-
toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
method), 128

get_gamma_and_acceleration() (fas-
toad.models.performances.mission.segments.registered.taxi.TaxiSegment
method), 155

get_gamma_and_acceleration() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractGroundSegment
method), 174

get_gamma_and_acceleration() (fas-

Index 215

FAST-OAD, Release unknown

toad.models.performances.mission.segments.time_step_base.AbstractRegulatedThrustSegment
method), 168

get_gamma_and_acceleration() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 164

get_input_definition() (fas-
toad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
method), 111

get_input_definitions() (fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
method), 114

get_input_variables() (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 113

get_input_weight_variable_name() (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 113

get_mission_definition() (fas-
toad.models.performances.mission.openmdao.base.BaseMissionComp
static method), 120

get_model() (fastoad.model_base.propulsion.IOMPropulsionWrapper
static method), 105

get_next_alpha() (fas-
toad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
method), 128

get_next_alpha() (fas-
toad.models.performances.mission.segments.registered.takeoff.rotation.RotationSegment
method), 131

get_next_alpha() (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
method), 164

get_openmdao_keys() (fas-
toad.openmdao.variables.variable.Variable
class method), 190

get_openmdao_kwargs() (fas-
toad.openmdao.variables.variable.Variable
method), 190

get_optimization_definition() (fas-
toad.io.configuration.configuration.FASTOADProblemConfigurator
method), 90

get_plugin_information() (in module fas-
toad.cmd.api), 80

get_problem() (fastoad.io.configuration.configuration.FASTOADProblemConfigurator
method), 90

get_properties() (fas-
toad.module_management.service_registry.RegisterService
method), 185

get_properties() (fas-
toad.module_management.service_registry.RegisterSpecializedService
method), 187

get_provider() (fas-
toad.module_management.service_registry.RegisterService
class method), 185

get_provider_description() (fas-

toad.module_management.service_registry.RegisterService
class method), 186

get_provider_domain() (fas-
toad.module_management.service_registry.RegisterService
class method), 186

get_provider_ids() (fas-
toad.module_management.service_registry.RegisterService
class method), 185

get_provider_ids() (fas-
toad.module_management.service_registry.RegisterSpecializedService
class method), 187

get_reserve() (fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 112

get_reserve_fuel() (fas-
toad.models.performances.mission.mission.Mission
method), 177

get_reserve_variable_name() (fas-
toad.models.performances.mission.openmdao.mission_wrapper.MissionWrapper
method), 124

get_route_names() (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 112

get_route_ranges() (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 112

get_segment_class() (fas-
toad.models.performances.mission.segments.base.SegmentDefinitions
class method), 157

get_submodel() (fas-
toad.module_management.service_registry.RegisterSubmodel
class method), 188

get_unique_mission_name() (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
method), 113

get_units() (fastoad.model_base.flight_point.FlightPoint
class method), 103

get_variable_list_from_system() (in module fas-
toad.openmdao.problem), 196

get_variable_name() (fas-
toad.io.xml.translator.VarXpathTranslator
method), 94

get_variable_name() (fas-
toad.io.xml.variable_io_standard.BasicVarXpathTranslator
method), 96

get_variables() (fas-
toad.gui.optimization_viewer.OptimizationViewer
method), 88

get_variables() (fas-
toad.gui.variable_viewer.VariableViewer
method), 89

get_wrapper() (fastoad.model_base.propulsion.BaseOMPropulsionComponent
static method), 106

get_xpath() (fastoad.io.xml.translator.VarXpathTranslator
method), 93

216 Index

FAST-OAD, Release unknown

get_xpath() (fastoad.io.xml.variable_io_standard.BasicVarXpathTranslator
method), 96

ground_altitude (fas-
toad.models.performances.mission.polar_modifier.GroundEffectRaymer
attribute), 179

ground_distance (fas-
toad.model_base.flight_point.FlightPoint
attribute), 101

GroundEffectRaymer (class in fas-
toad.models.performances.mission.polar_modifier),
179

GroundSpeedChangeSegment (class in fas-
toad.models.performances.mission.segments.registered.ground_speed_change),
145

H
HANDLING_QUALITIES (fas-

toad.module_management.constants.ModelDomain
attribute), 182

HoldSegment (class in fas-
toad.models.performances.mission.segments.registered.hold),
147

I
IDLE (fastoad.constants.EngineSetting attribute), 200
IFlightPart (class in fas-

toad.models.performances.mission.base),
174

index() (fastoad.models.performances.mission.base.FlightSequence
method), 175

induced_drag_coefficient (fas-
toad.models.performances.mission.polar_modifier.GroundEffectRaymer
attribute), 179

INITIAL_CLIMB (fastoad.constants.FlightPhase at-
tribute), 200

initialize() (fastoad.models.performances.mission.openmdao.base.BaseMissionComp
method), 119

initialize() (fastoad.models.performances.mission.openmdao.base.NeedsMFW
method), 119

initialize() (fastoad.models.performances.mission.openmdao.base.NeedsMTOW
method), 119

initialize() (fastoad.models.performances.mission.openmdao.base.NeedsOWE
method), 119

initialize() (fastoad.models.performances.mission.openmdao.mission.OMMission
method), 120

initialize() (fastoad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
method), 121

initialize() (fastoad.models.performances.mission.openmdao.mission_run.AdvancedMissionComp
method), 122

initialize() (fastoad.models.performances.mission.openmdao.mission_run.MissionComp
method), 121

initialize() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRange
method), 124

initialize() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeContourInputValues
method), 125

initialize() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeGridInputValues
method), 125

input_file_path (fas-
toad.io.configuration.configuration.FASTOADProblemConfigurator
property), 89

input_file_path (fas-
toad.openmdao.problem.FASTOADProblem
attribute), 194

input_unit (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

input_value (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

InputDefinition (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.input_definition),
108

interrupt_if_getting_further_from_target (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

IOMPropulsionWrapper (class in fas-
toad.model_base.propulsion), 105

IPropulsion (class in fastoad.model_base.propulsion),
104

is_input (fastoad.openmdao.variables.variable.Variable
property), 190

is_relative (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

is_relative() (fastoad.model_base.flight_point.FlightPoint
method), 103

isa_offset (fastoad.model_base.flight_point.FlightPoint
attribute), 101

isa_offset (fastoad.models.performances.mission.segments.base.AbstractFlightSegment
attribute), 158

IVariableIOFormatter (class in fastoad.io.formatter),
96

ivc_var_names (fastoad.openmdao.problem.ProblemAnalysis
attribute), 196

K
k_cd (fastoad.models.performances.mission.polar_modifier.GroundEffectRaymer

attribute), 179
k_winglet (fastoad.models.performances.mission.polar_modifier.GroundEffectRaymer

attribute), 179
key (fastoad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError

attribute), 91
kinematic_viscosity (fas-

toad.model_base.atmosphere.Atmosphere
property), 99

L
LANDING (fastoad.constants.FlightPhase attribute), 200
landing_gear_height (fas-

toad.models.performances.mission.polar_modifier.GroundEffectRaymer

Index 217

FAST-OAD, Release unknown

attribute), 179
lift (fastoad.model_base.flight_point.FlightPoint

attribute), 102
limit_units (fastoad.openmdao.validity_checker.CheckRecord

attribute), 197
limit_value (fastoad.openmdao.validity_checker.CheckRecord

attribute), 197
list_modules() (in module fastoad.cmd.api), 81
list_variables() (in module fastoad.cmd.api), 81
load() (fastoad.gui.optimization_viewer.OptimizationViewer

method), 87
load() (fastoad.gui.variable_viewer.VariableViewer

method), 88
load() (fastoad.io.configuration.configuration.FASTOADProblemConfigurator

method), 90
load() (fastoad.io.variable_io.DataFile method), 98
load() (fastoad.models.performances.mission.mission_definition.schema.MissionDefinition

method), 118
load_variables() (fas-

toad.gui.optimization_viewer.OptimizationViewer
method), 87

load_variables() (fas-
toad.gui.variable_viewer.VariableViewer
method), 89

log_records() (fastoad.openmdao.validity_checker.ValidityDomainChecker
static method), 199

logger_name (fastoad.openmdao.validity_checker.CheckRecord
attribute), 197

LONG (fastoad.constants.RangeCategory attribute), 201

M
mach (fastoad.model_base.atmosphere.Atmosphere prop-

erty), 99
mach (fastoad.model_base.flight_point.FlightPoint

attribute), 102
mach_bounds (fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment

attribute), 163
MacroSegmentBase (class in fas-

toad.models.performances.mission.segments.macro_segments),
160

MacroSegmentMeta (class in fas-
toad.models.performances.mission.segments.macro_segments),
160

make_absolute() (fas-
toad.model_base.flight_point.FlightPoint
method), 103

manage_overwrite() (in module fastoad.cmd.cli_utils),
84

MANDATORY_FIELD (in module fas-
toad.model_base.datacls), 100

mass (fastoad.model_base.flight_point.FlightPoint
attribute), 102

mass_breakdown_bar_plot() (in module fas-
toad.gui.analysis_and_plots), 85

mass_breakdown_sun_plot() (in module fas-
toad.gui.analysis_and_plots), 86

mass_ratio (fastoad.models.performances.mission.segments.registered.transition.DummyTransitionSegment
attribute), 156

MassTargetSegment (class in fas-
toad.models.performances.mission.segments.registered.mass_input),
149

max() (fastoad.constants.RangeCategory method), 201
maximum_CL (fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment

attribute), 163
maximum_flight_level (fas-

toad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
attribute), 136

maximum_flight_level (fas-
toad.models.performances.mission.segments.registered.cruise.ClimbAndCruiseSegment
attribute), 143

MEDIUM (fastoad.constants.RangeCategory attribute), 201
metadata (fastoad.openmdao.variables.variable.Variable

attribute), 189
metadata_keys() (fas-

toad.openmdao.variables.variable_list.VariableList
method), 191

min() (fastoad.constants.RangeCategory method), 201
Mission (class in fas-

toad.models.performances.mission.mission),
176

mission_name (fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
property), 112

mission_name (fastoad.models.performances.mission.openmdao.base.BaseMissionComp
property), 119

MissionBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder),
111

MissionComp (class in fas-
toad.models.performances.mission.openmdao.mission_run),
121

MissionDefinition (class in fas-
toad.models.performances.mission.mission_definition.schema),
118

MissionStructureBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
117

MissionViewer (class in fastoad.gui.mission_viewer),
87

MissionWrapper (class in fas-
toad.models.performances.mission.openmdao.mission_wrapper),
123

ModelDomain (class in fas-
toad.module_management.constants), 182

modify_polar() (fas-
toad.models.performances.mission.polar_modifier.AbstractPolarModifier
method), 178

modify_polar() (fas-
toad.models.performances.mission.polar_modifier.GroundEffectRaymer

218 Index

FAST-OAD, Release unknown

method), 179
modify_polar() (fas-

toad.models.performances.mission.polar_modifier.UnchangedPolar
method), 178

module
fastoad, 201
fastoad.api, 199
fastoad.cmd, 84
fastoad.cmd.api, 80
fastoad.cmd.cli, 83
fastoad.cmd.cli_utils, 83
fastoad.cmd.exceptions, 84
fastoad.configurations, 84
fastoad.constants, 200
fastoad.exceptions, 201
fastoad.gui, 89
fastoad.gui.analysis_and_plots, 84
fastoad.gui.exceptions, 87
fastoad.gui.mission_viewer, 87
fastoad.gui.optimization_viewer, 87
fastoad.gui.variable_viewer, 88
fastoad.io, 98
fastoad.io.configuration, 92
fastoad.io.configuration.configuration,

89
fastoad.io.configuration.exceptions, 91
fastoad.io.formatter, 96
fastoad.io.variable_io, 97
fastoad.io.xml, 96
fastoad.io.xml.constants, 92
fastoad.io.xml.exceptions, 92
fastoad.io.xml.translator, 93
fastoad.io.xml.variable_io_base, 94
fastoad.io.xml.variable_io_legacy, 95
fastoad.io.xml.variable_io_standard, 95
fastoad.model_base, 107
fastoad.model_base.atmosphere, 98
fastoad.model_base.datacls, 100
fastoad.model_base.flight_point, 100
fastoad.model_base.propulsion, 104
fastoad.models, 182
fastoad.models.performances, 182
fastoad.models.performances.mission, 181
fastoad.models.performances.mission.base,

174
fastoad.models.performances.mission.exceptions,

176
fastoad.models.performances.mission.mission,

176
fastoad.models.performances.mission.mission_definition,

119
fastoad.models.performances.mission.mission_definition.exceptions,

118

fastoad.models.performances.mission.mission_definition.mission_builder,
118

fastoad.models.performances.mission.mission_definition.mission_builder.constants,
107

fastoad.models.performances.mission.mission_definition.mission_builder.input_definition,
108

fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder,
111

fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders,
113

fastoad.models.performances.mission.mission_definition.schema,
118

fastoad.models.performances.mission.openmdao,
126

fastoad.models.performances.mission.openmdao.base,
119

fastoad.models.performances.mission.openmdao.link_mtow,
120

fastoad.models.performances.mission.openmdao.mission,
120

fastoad.models.performances.mission.openmdao.mission_run,
121

fastoad.models.performances.mission.openmdao.mission_wrapper,
123

fastoad.models.performances.mission.openmdao.payload_range,
124

fastoad.models.performances.mission.polar,
177

fastoad.models.performances.mission.polar_modifier,
178

fastoad.models.performances.mission.routes,
180

fastoad.models.performances.mission.segments,
174

fastoad.models.performances.mission.segments.base,
157

fastoad.models.performances.mission.segments.macro_segments,
160

fastoad.models.performances.mission.segments.registered,
157

fastoad.models.performances.mission.segments.registered.altitude_change,
134

fastoad.models.performances.mission.segments.registered.cruise,
137

fastoad.models.performances.mission.segments.registered.ground_speed_change,
145

fastoad.models.performances.mission.segments.registered.hold,
147

fastoad.models.performances.mission.segments.registered.mass_input,
149

fastoad.models.performances.mission.segments.registered.speed_change,
150

fastoad.models.performances.mission.segments.registered.start,
152

Index 219

FAST-OAD, Release unknown

fastoad.models.performances.mission.segments.registered.takeoff,
133

fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff,
126

fastoad.models.performances.mission.segments.registered.takeoff.rotation,
129

fastoad.models.performances.mission.segments.registered.takeoff.takeoff,
131

fastoad.models.performances.mission.segments.registered.taxi,
153

fastoad.models.performances.mission.segments.registered.transition,
155

fastoad.models.performances.mission.segments.time_step_base,
161

fastoad.models.performances.mission.util,
181

fastoad.module_management, 189
fastoad.module_management.constants, 182
fastoad.module_management.exceptions, 183
fastoad.module_management.service_registry,

185
fastoad.openmdao, 199
fastoad.openmdao.exceptions, 194
fastoad.openmdao.problem, 194
fastoad.openmdao.validity_checker, 197
fastoad.openmdao.variables, 193
fastoad.openmdao.variables.variable, 189
fastoad.openmdao.variables.variable_list,

191
fastoad.openmdao.whatsopt, 199
fastoad.source_data_files, 199

N
name (fastoad.model_base.flight_point.FlightPoint

attribute), 102
name (fastoad.models.performances.mission.base.IFlightPart

attribute), 174
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder

attribute), 114
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.DefaultStructureBuilder

attribute), 115
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.MissionStructureBuilder

attribute), 118
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PhaseStructureBuilder

attribute), 117
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PolarStructureBuilder

attribute), 115
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.RouteStructureBuilder

attribute), 117
name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.SegmentStructureBuilder

attribute), 116
name (fastoad.openmdao.variables.variable.Variable at-

tribute), 189

name_provider (fastoad.models.performances.mission.openmdao.base.BaseMissionComp
property), 119

names() (fastoad.openmdao.variables.variable_list.VariableList
method), 191

NeedsMFW (class in fas-
toad.models.performances.mission.openmdao.base),
119

NeedsMTOW (class in fas-
toad.models.performances.mission.openmdao.base),
119

NeedsOWE (class in fas-
toad.models.performances.mission.openmdao.base),
119

NoSetupError, 201

O
OK (fastoad.openmdao.validity_checker.ValidityStatus at-

tribute), 197
OMMission (class in fas-

toad.models.performances.mission.openmdao.mission),
120

OPTIMAL_ALTITUDE (fas-
toad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
attribute), 136

optimal_cl (fastoad.models.performances.mission.polar.Polar
property), 177

OPTIMAL_FLIGHT_LEVEL (fas-
toad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
attribute), 136

OptimalCruiseSegment (class in fas-
toad.models.performances.mission.segments.registered.cruise),
139

optimization_viewer() (in module fastoad.cmd.api),
83

OptimizationViewer (class in fas-
toad.gui.optimization_viewer), 87

optimize_problem() (in module fastoad.cmd.api), 83
original_exception (fas-

toad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError
attribute), 91

OTHER (fastoad.module_management.constants.ModelDomain
attribute), 182

out_file_option() (in module fastoad.cmd.cli_utils),
83

output_file_path (fas-
toad.io.configuration.configuration.FASTOADProblemConfigurator
property), 89

output_file_path (fas-
toad.openmdao.problem.FASTOADProblem
attribute), 194

output_unit (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

overwrite_option() (in module fastoad.cmd.cli_utils),
83

220 Index

FAST-OAD, Release unknown

P
parameter_name (fas-

toad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

parent_name (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
attribute), 114

part_flight_points (fas-
toad.models.performances.mission.base.FlightSequence
attribute), 175

part_identifier (fas-
toad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

path_separator (fas-
toad.io.xml.variable_io_standard.VariableXmlStandardFormatter
property), 95

payload_range_plot() (in module fas-
toad.gui.analysis_and_plots), 86

payload_variable (fas-
toad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
property), 121

PayloadRange (class in fas-
toad.models.performances.mission.openmdao.payload_range),
124

PayloadRangeContourInputValues (class in fas-
toad.models.performances.mission.openmdao.payload_range),
125

PayloadRangeGridInputValues (class in fas-
toad.models.performances.mission.openmdao.payload_range),
125

PERFORMANCE (fastoad.module_management.constants.ModelDomain
attribute), 182

PhaseStructureBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
116

Polar (class in fastoad.models.performances.mission.polar),
177

polar (fastoad.models.performances.mission.segments.registered.taxi.TaxiSegment
attribute), 155

polar (fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

polar_modifier (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

PolarStructureBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
115

prefix (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

pressure (fastoad.model_base.atmosphere.Atmosphere
property), 99

problem (fastoad.openmdao.problem.ProblemAnalysis
attribute), 196

problem_configuration (fas-
toad.gui.optimization_viewer.OptimizationViewer

attribute), 87
problem_variables (fas-

toad.openmdao.problem.ProblemAnalysis
attribute), 196

ProblemAnalysis (class in fastoad.openmdao.problem),
196

process_builder() (fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
method), 114

propulsion (fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
property), 112

propulsion (fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

PROPULSION (fastoad.module_management.constants.ModelDomain
attribute), 182

Q
qualified_name (fas-

toad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
property), 114

qualified_name (fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders.MissionStructureBuilder
property), 117

R
range_variable (fas-

toad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
property), 121

RangeCategory (class in fastoad.constants), 200
RangedRoute (class in fas-

toad.models.performances.mission.routes),
180

read() (fastoad.io.variable_io.VariableIO method), 97
read_inputs() (fastoad.openmdao.problem.FASTOADProblem

method), 195
read_translation_table() (fas-

toad.io.xml.translator.VarXpathTranslator
method), 93

read_variable_descriptions() (fas-
toad.openmdao.variables.variable.Variable
class method), 189

read_variables() (fas-
toad.io.formatter.IVariableIOFormatter
method), 96

read_variables() (fas-
toad.io.xml.variable_io_base.VariableXmlBaseFormatter
method), 94

read_variables() (fas-
toad.io.xml.variable_io_standard.VariableXmlStandardFormatter
method), 95

reference_area (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
property), 112

Index 221

FAST-OAD, Release unknown

reference_area (fas-
toad.models.performances.mission.segments.registered.cruise.BreguetCruiseSegment
attribute), 145

reference_area (fas-
toad.models.performances.mission.segments.registered.taxi.TaxiSegment
attribute), 155

reference_area (fas-
toad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
attribute), 163

RegisteredSegment (class in fas-
toad.models.performances.mission.segments.base),
157

RegisterElement (class in fas-
toad.models.performances.mission.base),
175

RegisterOpenMDAOSystem (class in fas-
toad.module_management.service_registry),
187

RegisterPolarModifier (class in fas-
toad.models.performances.mission.polar_modifier),
178

RegisterPropulsion (class in fas-
toad.module_management.service_registry),
187

RegisterSegment (class in fas-
toad.models.performances.mission.segments.base),
157

RegisterService (class in fas-
toad.module_management.service_registry),
185

RegisterSpecializedService (class in fas-
toad.module_management.service_registry),
186

RegisterSubmodel (class in fas-
toad.module_management.service_registry),
188

remove_field() (fas-
toad.model_base.flight_point.FlightPoint
class method), 103

reserve_base_route_name (fas-
toad.models.performances.mission.mission.Mission
attribute), 177

reserve_mass_ratio (fas-
toad.models.performances.mission.segments.registered.transition.DummyTransitionSegment
attribute), 156

reserve_ratio (fastoad.models.performances.mission.mission.Mission
attribute), 177

reset_analysis() (fas-
toad.openmdao.problem.FASTOADProblem
method), 195

ROOT_TAG (in module fastoad.io.xml.constants), 92
rotation_alpha_limit (fas-

toad.models.performances.mission.segments.registered.takeoff.takeoff.TakeOffSequence
attribute), 133

rotation_equivalent_airspeed (fas-
toad.models.performances.mission.segments.registered.takeoff.takeoff.TakeOffSequence
attribute), 133

rotation_rate (fastoad.models.performances.mission.segments.registered.takeoff.rotation.RotationSegment
attribute), 131

RotationSegment (class in fas-
toad.models.performances.mission.segments.registered.takeoff.rotation),
129

RouteStructureBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
117

run_driver() (fastoad.openmdao.problem.FASTOADProblem
method), 194

run_model() (fastoad.openmdao.problem.FASTOADProblem
method), 194

S
save() (fastoad.gui.optimization_viewer.OptimizationViewer

method), 87
save() (fastoad.gui.variable_viewer.VariableViewer

method), 88
save() (fastoad.io.configuration.configuration.FASTOADProblemConfigurator

method), 90
save() (fastoad.io.variable_io.DataFile method), 98
save_as() (fastoad.io.variable_io.DataFile method), 98
scalarize() (fastoad.model_base.flight_point.FlightPoint

method), 104
SegmentDefinitions (class in fas-

toad.models.performances.mission.segments.base),
157

SegmentStructureBuilder (class in fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders),
116

service_id (fastoad.module_management.service_registry.RegisterOpenMDAOSystem
attribute), 187

service_id (fastoad.module_management.service_registry.RegisterPropulsion
attribute), 187

service_id (fastoad.module_management.service_registry.RegisterSpecializedService
attribute), 187

set() (fastoad.io.xml.translator.VarXpathTranslator
method), 93

set_as_absolute() (fas-
toad.model_base.flight_point.FlightPoint
method), 102

set_as_relative() (fas-
toad.model_base.flight_point.FlightPoint
method), 102

set_optimization_definition() (fas-
toad.io.configuration.configuration.FASTOADProblemConfigurator
method), 90

set_variable_value() (fas-
toad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
method), 110

222 Index

FAST-OAD, Release unknown

setup() (fastoad.model_base.propulsion.BaseOMPropulsionComponent
method), 105

setup() (fastoad.model_base.propulsion.IOMPropulsionWrapper
method), 105

setup() (fastoad.models.performances.mission.openmdao.link_mtow.ComputeMTOW
method), 120

setup() (fastoad.models.performances.mission.openmdao.mission.OMMission
method), 120

setup() (fastoad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
method), 121

setup() (fastoad.models.performances.mission.openmdao.mission_run.AdvancedMissionComp
method), 122

setup() (fastoad.models.performances.mission.openmdao.mission_run.MissionComp
method), 121

setup() (fastoad.models.performances.mission.openmdao.mission_wrapper.MissionWrapper
method), 124

setup() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRange
method), 124

setup() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeContourInputValues
method), 125

setup() (fastoad.models.performances.mission.openmdao.payload_range.PayloadRangeGridInputValues
method), 125

setup() (fastoad.openmdao.problem.FASTOADModel
method), 196

setup() (fastoad.openmdao.problem.FASTOADProblem
method), 194

setup_partials() (fas-
toad.model_base.propulsion.BaseOMPropulsionComponent
method), 105

setup_partials() (fas-
toad.models.performances.mission.openmdao.mission_run.MissionComp
method), 122

sfc (fastoad.model_base.flight_point.FlightPoint at-
tribute), 102

shape (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

shape_by_conn (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

SHORT (fastoad.constants.RangeCategory attribute), 200
SHORT_MEDIUM (fastoad.constants.RangeCategory

attribute), 200
slope_angle (fastoad.model_base.flight_point.FlightPoint

attribute), 102
slope_angle_derivative (fas-

toad.model_base.flight_point.FlightPoint
attribute), 102

solve_distance (fas-
toad.models.performances.mission.routes.RangedRoute
attribute), 180

SOURCE_DATA (fastoad.cmd.api.UserFileType attribute),
80

source_file (fastoad.openmdao.validity_checker.CheckRecord
attribute), 197

span (fastoad.models.performances.mission.polar_modifier.GroundEffectRaymer

attribute), 179
specific_burned_fuel_variable (fas-

toad.models.performances.mission.openmdao.mission.SpecificBurnedFuelComputation
property), 121

SpecificBurnedFuelComputation (class in fas-
toad.models.performances.mission.openmdao.mission),
121

speed_of_sound (fas-
toad.model_base.atmosphere.Atmosphere
property), 99

SpeedChangeSegment (class in fas-
toad.models.performances.mission.segments.registered.speed_change),
150

Start (class in fastoad.models.performances.mission.segments.registered.start),
152

status (fastoad.openmdao.validity_checker.CheckRecord
attribute), 197

structure (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
property), 114

subsystem_order (fas-
toad.openmdao.problem.ProblemAnalysis
attribute), 196

T
TAKEOFF (fastoad.constants.EngineSetting attribute), 200
TAKEOFF (fastoad.constants.FlightPhase attribute), 200
TakeOffSequence (class in fas-

toad.models.performances.mission.segments.registered.takeoff.takeoff),
131

target (fastoad.models.performances.mission.base.FlightSequence
property), 175

target (fastoad.models.performances.mission.base.IFlightPart
attribute), 174

target (fastoad.models.performances.mission.segments.base.AbstractFlightSegment
attribute), 158

target (fastoad.models.performances.mission.segments.base.RegisteredSegment
attribute), 158

target (fastoad.models.performances.mission.segments.macro_segments.MacroSegmentBase
attribute), 160

target (fastoad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
property), 137

target (fastoad.models.performances.mission.segments.registered.cruise.BreguetCruiseSegment
property), 145

target (fastoad.models.performances.mission.segments.registered.cruise.ClimbAndCruiseSegment
property), 143

target (fastoad.models.performances.mission.segments.registered.cruise.CruiseSegment
property), 139

target (fastoad.models.performances.mission.segments.registered.cruise.OptimalCruiseSegment
property), 141

target (fastoad.models.performances.mission.segments.registered.ground_speed_change.GroundSpeedChangeSegment
property), 147

target (fastoad.models.performances.mission.segments.registered.hold.HoldSegment
property), 149

Index 223

FAST-OAD, Release unknown

target (fastoad.models.performances.mission.segments.registered.mass_input.MassTargetSegment
property), 149

target (fastoad.models.performances.mission.segments.registered.speed_change.SpeedChangeSegment
property), 152

target (fastoad.models.performances.mission.segments.registered.start.Start
property), 153

target (fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff.EndOfTakeoffSegment
property), 129

target (fastoad.models.performances.mission.segments.registered.takeoff.rotation.RotationSegment
property), 131

target (fastoad.models.performances.mission.segments.registered.taxi.TaxiSegment
property), 155

target (fastoad.models.performances.mission.segments.registered.transition.DummyTransitionSegment
property), 157

target (fastoad.models.performances.mission.segments.time_step_base.AbstractFixedDurationSegment
property), 170

target (fastoad.models.performances.mission.segments.time_step_base.AbstractGroundSegment
property), 174

target (fastoad.models.performances.mission.segments.time_step_base.AbstractManualThrustSegment
property), 166

target (fastoad.models.performances.mission.segments.time_step_base.AbstractRegulatedThrustSegment
property), 168

target (fastoad.models.performances.mission.segments.time_step_base.AbstractTakeOffSegment
property), 172

target (fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment
property), 164

target (fastoad.models.performances.mission.segments.time_step_base.FlightSegment
property), 174

target_fuel_consumption (fas-
toad.models.performances.mission.mission.Mission
attribute), 176

TAXI_IN (fastoad.constants.FlightPhase attribute), 200
TAXI_OUT (fastoad.constants.FlightPhase attribute), 200
TaxiSegment (class in fas-

toad.models.performances.mission.segments.registered.taxi),
153

temperature (fastoad.model_base.atmosphere.Atmosphere
property), 99

thrust (fastoad.model_base.flight_point.FlightPoint at-
tribute), 102

thrust_is_regulated (fas-
toad.model_base.flight_point.FlightPoint
attribute), 102

thrust_rate (fastoad.model_base.flight_point.FlightPoint
attribute), 102

thrust_rate (fastoad.models.performances.mission.segments.time_step_base.AbstractManualThrustSegment
attribute), 166

time (fastoad.model_base.flight_point.FlightPoint
attribute), 101

time_step (fastoad.models.performances.mission.segments.registered.altitude_change.AltitudeChangeSegment
attribute), 136

time_step (fastoad.models.performances.mission.segments.registered.taxi.TaxiSegment
attribute), 155

time_step (fastoad.models.performances.mission.segments.time_step_base.AbstractFixedDurationSegment

attribute), 170
time_step (fastoad.models.performances.mission.segments.time_step_base.AbstractRegulatedThrustSegment

attribute), 168
time_step (fastoad.models.performances.mission.segments.time_step_base.AbstractTakeOffSegment

attribute), 172
time_step (fastoad.models.performances.mission.segments.time_step_base.AbstractTimeStepFlightSegment

attribute), 163
to_dataframe() (fas-

toad.openmdao.variables.variable_list.VariableList
method), 192

to_ivc() (fastoad.openmdao.variables.variable_list.VariableList
method), 192

TOO_HIGH (fastoad.openmdao.validity_checker.ValidityStatus
attribute), 197

TOO_LOW (fastoad.openmdao.validity_checker.ValidityStatus
attribute), 197

true_airspeed (fastoad.model_base.atmosphere.Atmosphere
property), 99

true_airspeed (fastoad.model_base.flight_point.FlightPoint
attribute), 102

true_airspeed (fastoad.models.performances.mission.segments.registered.taxi.TaxiSegment
attribute), 155

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
attribute), 114

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.DefaultStructureBuilder
attribute), 115

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.MissionStructureBuilder
attribute), 118

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PhaseStructureBuilder
attribute), 116

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.PolarStructureBuilder
attribute), 115

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.RouteStructureBuilder
attribute), 117

type (fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders.SegmentStructureBuilder
attribute), 116

U
UnchangedPolar (class in fas-

toad.models.performances.mission.polar_modifier),
178

unitary_reynolds (fas-
toad.model_base.atmosphere.Atmosphere
property), 99

units (fastoad.openmdao.variables.variable.Variable
property), 190

UNSPECIFIED (fastoad.module_management.constants.ModelDomain
attribute), 182

update() (fastoad.openmdao.variables.variable_list.VariableList
method), 192

update_variable_descriptions() (fas-
toad.openmdao.variables.variable.Variable
class method), 190

224 Index

FAST-OAD, Release unknown

use_max_lift_drag_ratio (fas-
toad.models.performances.mission.segments.registered.cruise.BreguetCruiseSegment
attribute), 145

use_opposite (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition
attribute), 110

UserFileType (class in fastoad.cmd.api), 80

V
val (fastoad.openmdao.variables.variable.Variable prop-

erty), 190
ValidityDomainChecker (class in fas-

toad.openmdao.validity_checker), 197
ValidityStatus (class in fas-

toad.openmdao.validity_checker), 197
value (fastoad.io.configuration.exceptions.FASTConfigurationBaseKeyBuildingError

attribute), 91
value (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition

property), 110
value (fastoad.openmdao.validity_checker.CheckRecord

attribute), 197
value (fastoad.openmdao.variables.variable.Variable

property), 190
value_units (fastoad.openmdao.validity_checker.CheckRecord

attribute), 197
Variable (class in fas-

toad.openmdao.variables.variable), 189
variable_name (fastoad.models.performances.mission.mission_definition.mission_builder.input_definition.InputDefinition

property), 111
variable_name (fastoad.openmdao.validity_checker.CheckRecord

attribute), 197
variable_names (fas-

toad.io.xml.translator.VarXpathTranslator
property), 93

variable_prefix (fas-
toad.models.performances.mission.mission_definition.mission_builder.mission_builder.MissionBuilder
property), 112

variable_prefix (fas-
toad.models.performances.mission.mission_definition.mission_builder.structure_builders.AbstractStructureBuilder
attribute), 114

variable_prefix (fas-
toad.models.performances.mission.openmdao.base.BaseMissionComp
property), 119

variable_viewer() (in module fastoad.cmd.api), 83
VariableIO (class in fastoad.io.variable_io), 97
VariableLegacy1XmlFormatter (class in fas-

toad.io.xml.variable_io_legacy), 95
VariableList (class in fas-

toad.openmdao.variables.variable_list),
191

VariableViewer (class in fastoad.gui.variable_viewer),
88

VariableXmlBaseFormatter (class in fas-
toad.io.xml.variable_io_base), 94

VariableXmlStandardFormatter (class in fas-
toad.io.xml.variable_io_standard), 95

VarXpathTranslator (class in fas-
toad.io.xml.translator), 93

VERY_LONG (fastoad.constants.RangeCategory attribute),
201

W
WEIGHT (fastoad.module_management.constants.ModelDomain

attribute), 182
wheels_friction (fas-

toad.models.performances.mission.segments.time_step_base.AbstractGroundSegment
attribute), 174

wing_geometry_plot() (in module fas-
toad.gui.analysis_and_plots), 84

write() (fastoad.io.variable_io.VariableIO method), 97
write_n2() (in module fastoad.cmd.api), 82
write_needed_inputs() (fas-

toad.io.configuration.configuration.FASTOADProblemConfigurator
method), 90

write_needed_inputs() (fas-
toad.openmdao.problem.FASTOADProblem
method), 194

write_outputs() (fas-
toad.openmdao.problem.FASTOADProblem
method), 195

write_variables() (fas-
toad.io.formatter.IVariableIOFormatter
method), 96

write_variables() (fas-
toad.io.xml.variable_io_base.VariableXmlBaseFormatter
method), 94

write_variables() (fas-
toad.io.xml.variable_io_standard.VariableXmlStandardFormatter
method), 95

write_xdsm() (in module fastoad.cmd.api), 82
write_xdsm() (in module fastoad.openmdao.whatsopt),

199

X
xml_io_attribute (fas-

toad.io.xml.variable_io_base.VariableXmlBaseFormatter
attribute), 94

xml_unit_attribute (fas-
toad.io.xml.variable_io_base.VariableXmlBaseFormatter
attribute), 94

XMLReadError, 201
xpaths (fastoad.io.xml.translator.VarXpathTranslator

property), 93

Index 225

	Contents
	License
	Contributors
	How to cite us
	Changelog
	Version 1.7.0
	Version 1.6.0
	Version 1.5.2
	Version 1.5.1
	Version 1.5.0
	Version 1.4.2
	Version 1.4.1
	Version 1.4.0
	Version 1.3.5
	Version 1.3.4
	Version 1.3.3
	Version 1.3.2
	Version 1.3.1
	Version 1.3.0.post0
	Version 1.3.0
	Version 1.2.1
	Version 1.1.2
	Version 1.1.1
	Version 1.1.0
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0.0
	Version 0.5.4-beta
	Version 0.5.3-beta
	Version 0.5.2-beta
	Version 0.5.1-beta
	Version 0.5.0-beta
	Version 0.4.2-beta
	Version 0.4.0-beta
	Version 0.3.1-beta
	Version 0.3.0-beta
	Version 0.2.2-beta
	Version 0.2.1-beta
	Version 0.2.0b
	Version 0.1.0a

	General documentation
	Installation procedure
	FAST-OAD overview
	How it works
	Overview of FAST-OAD files
	configuration file (.yml)
	The input and output data files (.xml)

	Usage
	FAST-OAD configuration file
	Custom module path
	Input and output files
	Problem driver
	Solvers
	Problem definition
	Model options
	Optimization settings
	Design variables
	Objective function
	Constraints

	Using FAST-OAD through Command line
	How to get information about available plugins
	How to generate a configuration file
	How to get list of registered modules
	How to get list of variables
	How to generate an input file
	How to generate a source data file
	How to view the problem process
	N2 diagram
	XDSM

	How to run the problem
	Run Multi-Disciplinary Analysis
	Run Multi-Disciplinary Optimization

	Using FAST-OAD through Python

	Problem variables
	Variable naming
	Serialization
	File format
	FAST-OAD API

	Mission module
	Defining missions
	Mission file
	General description
	File sections
	Phase definition section
	Specific takeoff phase definition section
	Route definition section
	Mission definition section
	Factorizing parameters

	Flight segments
	Segment types
	start segment
	mass_input segment
	speed_change segment
	altitude_change segment
	cruise segment
	optimal_cruise segment
	holding segment
	taxi segment
	transition segment
	Target definition
	Usage of a mass ratio
	Reserve mass ratio
	ground_speed_change segment
	rotation segment
	end_of_takeoff segment
	takeoff segment
	Segment target
	Absolute and relative values
	Special segment parameters
	engine_setting parameter
	polar parameter(s)

	Setting values in mission file
	hard-coded value and unit
	hard-coded value with no unit
	OpenMDAO variable
	Using opposite value
	Contextual OpenMDAO variable
	Example

	Mission module
	Inputs and outputs of the module
	Usage in FAST-OAD configuration file
	propulsion_id
	mission_file_path
	out_file
	mission_name
	use_initializer_iteration
	adjust_fuel
	compute_TOW
	add_solver
	is_sizing

	Extensibility
	Adding segment types
	Links between Python implementation and mission definition file
	Segment keyword
	Segment parameters
	Implementation of a segment class
	The AbstractFlightSegment class
	The AbstractTimeStepFlightSegment class

	The FlightPoint class
	Available flight parameters
	Exchanges with pandas DataFrame
	Extensibility

	Adding modules to FAST-OAD
	How to add custom OpenMDAO modules to FAST-OAD
	Create your OpenMDAO system
	Variable naming
	Defining options
	Definition of partial derivatives
	About ImplicitComponent classes
	Checking validity domains

	Register your system(s)
	Modify the configuration file

	How to add a custom propulsion model to FAST-OAD
	The IPropulsion interface
	Computation of propulsion data
	Propulsion model inputs
	Propulsion model outputs
	Computation of consumed mass

	The OpenMDAO wrapper
	Defining the wrapper
	Registering the wrapper
	Using the wrapper in the configuration file

	How to document your variables
	Defining variable description in your OpenMDAO component
	Defining variable description in dedicated files

	How to add custom OpenMDAO modules to FAST-OAD as a plugin
	Plugin structure
	Plugin packaging
	Plugin declaration
	Building
	Publishing

	Submodels in FAST-OAD
	Why submodels ?
	How to use submodels in a custom module ?
	How to declare a custom submodel ?
	How to select submodels
	Using configuration file (recommended)
	Using Python

	Deactivating a submodel

	fastoad
	fastoad package
	Subpackages
	fastoad.cmd package
	Subpackages
	Submodules
	fastoad.cmd.api module
	fastoad.cmd.cli module
	fastoad.cmd.cli_utils module
	fastoad.cmd.exceptions module
	Module contents

	fastoad.configurations package
	Module contents

	fastoad.gui package
	Subpackages
	Submodules
	fastoad.gui.analysis_and_plots module
	fastoad.gui.exceptions module
	fastoad.gui.mission_viewer module
	fastoad.gui.optimization_viewer module
	fastoad.gui.variable_viewer module
	Module contents

	fastoad.io package
	Subpackages
	fastoad.io.configuration package
	Subpackages
	Submodules
	fastoad.io.configuration.configuration module
	fastoad.io.configuration.exceptions module
	Module contents
	fastoad.io.xml package
	Subpackages
	Submodules
	fastoad.io.xml.constants module
	fastoad.io.xml.exceptions module
	fastoad.io.xml.translator module
	fastoad.io.xml.variable_io_base module
	fastoad.io.xml.variable_io_legacy module
	fastoad.io.xml.variable_io_standard module
	Module contents
	Submodules
	fastoad.io.formatter module
	fastoad.io.variable_io module
	Module contents

	fastoad.model_base package
	Subpackages
	Submodules
	fastoad.model_base.atmosphere module
	fastoad.model_base.datacls module
	fastoad.model_base.flight_point module
	fastoad.model_base.propulsion module
	Module contents

	fastoad.models package
	Subpackages
	fastoad.models.performances package
	Subpackages
	fastoad.models.performances.mission package
	Subpackages
	fastoad.models.performances.mission.mission_definition package
	Subpackages
	fastoad.models.performances.mission.mission_definition.mission_builder package
	Subpackages
	Submodules
	fastoad.models.performances.mission.mission_definition.mission_builder.constants module
	fastoad.models.performances.mission.mission_definition.mission_builder.input_definition module
	fastoad.models.performances.mission.mission_definition.mission_builder.mission_builder module
	fastoad.models.performances.mission.mission_definition.mission_builder.structure_builders module
	Module contents
	Submodules
	fastoad.models.performances.mission.mission_definition.exceptions module
	fastoad.models.performances.mission.mission_definition.schema module
	Module contents
	fastoad.models.performances.mission.openmdao package
	Subpackages
	Submodules
	fastoad.models.performances.mission.openmdao.base module
	fastoad.models.performances.mission.openmdao.link_mtow module
	fastoad.models.performances.mission.openmdao.mission module
	fastoad.models.performances.mission.openmdao.mission_run module
	fastoad.models.performances.mission.openmdao.mission_wrapper module
	fastoad.models.performances.mission.openmdao.payload_range module
	Module contents
	fastoad.models.performances.mission.segments package
	Subpackages
	fastoad.models.performances.mission.segments.registered package
	Subpackages
	fastoad.models.performances.mission.segments.registered.takeoff package
	Submodules
	fastoad.models.performances.mission.segments.registered.takeoff.end_of_takeoff module
	fastoad.models.performances.mission.segments.registered.takeoff.rotation module
	fastoad.models.performances.mission.segments.registered.takeoff.takeoff module
	Module contents
	Submodules
	fastoad.models.performances.mission.segments.registered.altitude_change module
	fastoad.models.performances.mission.segments.registered.cruise module
	fastoad.models.performances.mission.segments.registered.ground_speed_change module
	fastoad.models.performances.mission.segments.registered.hold module
	fastoad.models.performances.mission.segments.registered.mass_input module
	fastoad.models.performances.mission.segments.registered.speed_change module
	fastoad.models.performances.mission.segments.registered.start module
	fastoad.models.performances.mission.segments.registered.taxi module
	fastoad.models.performances.mission.segments.registered.transition module
	Module contents
	Submodules
	fastoad.models.performances.mission.segments.base module
	fastoad.models.performances.mission.segments.macro_segments module
	fastoad.models.performances.mission.segments.time_step_base module
	Module contents
	Submodules
	fastoad.models.performances.mission.base module
	fastoad.models.performances.mission.exceptions module
	fastoad.models.performances.mission.mission module
	fastoad.models.performances.mission.polar module
	fastoad.models.performances.mission.polar_modifier module
	fastoad.models.performances.mission.routes module
	fastoad.models.performances.mission.util module
	Module contents
	Module contents
	Module contents

	fastoad.module_management package
	Subpackages
	Submodules
	fastoad.module_management.constants module
	fastoad.module_management.exceptions module
	fastoad.module_management.service_registry module
	Module contents

	fastoad.openmdao package
	Subpackages
	fastoad.openmdao.variables package
	Submodules
	fastoad.openmdao.variables.variable module
	fastoad.openmdao.variables.variable_list module
	Module contents
	Submodules
	fastoad.openmdao.exceptions module
	fastoad.openmdao.problem module
	fastoad.openmdao.validity_checker module
	fastoad.openmdao.whatsopt module
	Module contents

	fastoad.source_data_files package
	Module contents

	Submodules
	fastoad.api module
	fastoad.constants module
	fastoad.exceptions module

	Module contents

	Indices and tables
	Bibliography
	Python Module Index
	Index

