"""
Class for managing a list of OpenMDAO variables.
"""
# This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
# Copyright (C) 2024 ONERA & ISAE-SUPAERO
# FAST is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from copy import deepcopy
from typing import Iterable, List, Mapping, Tuple, Union
import numpy as np
import openmdao.api as om
import pandas as pd
from deprecated import deprecated
from fastoad.openmdao._utils import get_unconnected_input_names
from ._util import get_problem_variables
from .variable import METADATA_TO_IGNORE, Variable
[docs]class VariableList(list):
"""
Class for storing OpenMDAO variables.
A list of :class:`~fastoad.openmdao.variables.variable.Variable` instances, but items can
also be accessed through variable names. It also has utilities to be converted from/to some
other data structures (python dict, OpenMDAO IndepVarComp, pandas DataFrame)
See documentation of :class:`~fastoad.openmdao.variables.variable.Variable` to see how to
manipulate each element.
There are several ways for adding variables::
# Assuming these Python variables are ready...
var_1 = Variable('var/1', value=0.)
metadata_2 = {'value': 1., 'units': 'm'}
# ... a VariableList instance can be populated like this:
vars_A = VariableList()
vars_A.append(var_1) # Adds directly a Variable instance
vars_A['var/2'] = metadata_2 # Adds the variable with given name and given metadata
Note:
Adding a Variable instance with a name that is already in the VariableList instance
will replace the previous Variable instance instead of adding a new one.
.. code:: python
# It is also possible to instantiate a VariableList instance from another VariableList
# instance or a simple list of Variable instances
vars_B = VariableList(vars_A)
vars_C = VariableList([var_1])
# An existing VariableList instance can also receive the content of another VariableList
# instance.
vars_C.update(vars_A) # variables in vars_A will overwrite variables with same
# name in vars_C
After that, following equalities are True::
print( var_1 in vars_A )
print( 'var/1' in vars_A.names() )
print( 'var/2' in vars_A.names() )
"""
[docs] def names(self) -> List[str]:
"""
:return: names of variables
"""
return [var.name for var in self]
[docs] def append(self, var: Variable) -> None:
"""
Appends var to the end of the list, unless its name is already used. In that case, var
will replace the previous Variable instance with the same name.
"""
if not isinstance(var, Variable):
raise TypeError("VariableList items should be Variable instances")
if var.name in self.names():
self[self.names().index(var.name)] = var
else:
super().append(var)
[docs] def add_var(self, name, **kwargs):
"""
Adds, or replace, the named variable with given attributes
:param name:
:param kwargs:
"""
self.append(Variable(name, **kwargs))
[docs] def update(self, other_var_list: list, add_variables: bool = True):
"""
Uses variables in other_var_list to update the current VariableList instance.
For each Variable instance in other_var_list:
- if a Variable instance with same name exists, it is replaced by the one
in other_var_list (special case: if one in other_var_list has an empty description,
the original description is kept)
- if not, Variable instance from other_var_list will be added only if
add_variables==True
:param other_var_list: source for new Variable data
:param add_variables: if True, unknown variables are also added
"""
for var in other_var_list:
if add_variables or var.name in self.names():
# To avoid to lose variables description when the variable list is updated with a
# list without descriptions (issue # 319)
if var.name in self.names() and self[var.name].description and not var.description:
var.description = self[var.name].description
self.append(deepcopy(var))
[docs] def to_ivc(self) -> om.IndepVarComp:
"""
:return: an OpenMDAO IndepVarComp instance with all variables from current list
"""
ivc = om.IndepVarComp()
for variable in self:
attributes = variable.metadata.copy()
value = attributes.pop("val")
# Some attributes are not compatible with add_output
for attr in METADATA_TO_IGNORE:
if attr in attributes:
del attributes[attr]
ivc.add_output(variable.name, value, **attributes)
return ivc
[docs] def to_dataframe(self) -> pd.DataFrame:
"""
Creates a DataFrame instance from a VariableList instance.
Column names are "name" + the keys returned by :meth:`Variable.get_openmdao_keys`.
Values in Series "value" are floats or lists (numpy arrays are converted).
:return: a pandas DataFrame instance with all variables from current list
"""
var_dict = {"name": []}
var_dict.update({metadata_name: [] for metadata_name in self.metadata_keys()})
for variable in self:
value = self._as_list_or_item(variable.value)
var_dict["name"].append(variable.name)
for metadata_name in self.metadata_keys():
if metadata_name == "val":
var_dict["val"].append(value)
else:
# TODO: make this more generic
if metadata_name in ["val", "initial_value", "lower", "upper"]:
metadata = self._as_list_or_item(variable.metadata[metadata_name])
else:
metadata = variable.metadata[metadata_name]
var_dict[metadata_name].append(metadata)
df = pd.DataFrame.from_dict(var_dict)
return df
[docs] @classmethod
def from_dict(
cls, var_dict: Union[Mapping[str, dict], Iterable[Tuple[str, dict]]]
) -> "VariableList":
"""
Creates a VariableList instance from a dict-like object.
:param var_dict:
:return: a VariableList instance
"""
variables = cls()
for var_name, metadata in dict(var_dict).items():
variables.append(Variable(var_name, **metadata))
return variables
[docs] @classmethod
def from_ivc(cls, ivc: om.IndepVarComp) -> "VariableList":
"""
Creates a VariableList instance from an OpenMDAO IndepVarComp instance
:param ivc: an IndepVarComp instance
:return: a VariableList instance
"""
variables = cls()
# Need setup on ivc to have get_io_metadata() working
ivc = deepcopy(ivc)
problem = om.Problem()
problem.model.add_subsystem("ivc", ivc)
problem.setup()
for name, metadata in ivc.get_io_metadata(
metadata_keys=["val", "units", "upper", "lower"]
).items():
metadata = metadata.copy()
value = metadata.pop("val")
value = cls._as_list_or_item(value)
metadata.update({"val": value})
variables[name] = metadata
return variables
@classmethod
def _as_list_or_item(cls, value):
value = np.asarray(value)
if np.size(value) == 1:
value = value.item()
try:
value = float(value)
except (TypeError, ValueError):
pass
return value
return value.tolist()
[docs] @classmethod
def from_dataframe(cls, df: pd.DataFrame) -> "VariableList":
"""
Creates a VariableList instance from a pandas DataFrame instance.
The DataFrame instance is expected to have column names "name" + some keys among the ones
given by :meth:`Variable.get_openmdao_keys`.
:param df: a DataFrame instance
:return: a VariableList instance
"""
column_names = [name for name in df.columns]
def _get_variable(row):
var_as_dict = {key: val for key, val in zip(column_names, row)}
# TODO: make this more generic
for key, val in var_as_dict.items():
if key in ["val", "initial_value", "lower", "upper"]:
var_as_dict[key] = cls._as_list_or_item(val)
else:
pass
return Variable(**var_as_dict)
return cls([_get_variable(row) for row in df[column_names].values])
[docs] @classmethod
def from_problem(
cls,
problem: om.Problem,
use_initial_values: bool = False,
get_promoted_names: bool = True,
promoted_only: bool = True,
io_status: str = "all",
) -> "VariableList":
"""
Creates a VariableList instance containing inputs and outputs of an OpenMDAO Problem.
The inputs (is_input=True) correspond to the variables of IndepVarComp
components and all the unconnected input variables.
.. note::
Variables from _auto_ivc are ignored.
:param problem: OpenMDAO Problem instance to inspect
:param use_initial_values: if True, or if problem has not been run, returned instance will
contain values before computation
:param get_promoted_names: if True, promoted names will be returned instead of absolute ones
(if no promotion, absolute name will be returned)
:param promoted_only: if True, only promoted variable names will be returned
:param io_status: to choose with type of variable we return ("all", "inputs, "outputs")
:return: VariableList instance
"""
inputs, outputs = get_problem_variables(
problem,
get_promoted_names=get_promoted_names,
promoted_only=promoted_only,
)
# Conversion to VariableList instances
input_vars = cls.from_dict(inputs)
output_vars = cls.from_dict(outputs)
if io_status == "all":
variables = input_vars + output_vars
elif io_status == "inputs":
variables = input_vars
elif io_status == "outputs":
variables = output_vars
else:
raise ValueError("Unknown value for io_status")
# Use computed value instead of initial ones, if asked for, and if problem has been run.
# Note: using problem.get_val() if problem has not been run may lead to unexpected
# behaviour when actually running the problem.
if not use_initial_values and problem.model.iter_count > 0:
for variable in variables:
try:
# Maybe useless, but we force units to ensure it is consistent
variable.value = problem.get_val(variable.name, units=variable.units)
except RuntimeError:
# In case problem is incompletely set, problem.get_val() will fail.
# In such case, falling back to the method for initial values
# should be enough.
pass
return variables
def __getitem__(self, key) -> Variable:
if isinstance(key, str):
return self[self.names().index(key)]
else:
return super().__getitem__(key)
def __setitem__(self, key, value):
if isinstance(key, str):
if isinstance(value, dict):
variable = Variable(key, **value)
if key in self.names():
self[key].metadata = variable.metadata
else:
self.append(variable)
else:
raise TypeError(
'VariableList can be set with "vars[key] = value" only if value is a '
"dict of metadata"
)
elif not isinstance(value, Variable):
raise TypeError("VariableList items should be Variable instances")
else:
super().__setitem__(key, value)
def __delitem__(self, key):
if isinstance(key, str):
del self[self.names().index(key)]
else:
super().__delitem__(key)
def __add__(self, other) -> Union[List, "VariableList"]:
if isinstance(other, VariableList):
return type(self)(super().__add__(other))
else:
return super().__add__(other)
def __eq__(self, other) -> bool:
return set(self) == set(other)