Source code for fastoad.models.geometry.compute_aero_center

"""
    Estimation of aerodynamic center
"""

#  This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
#  Copyright (C) 2021 ONERA & ISAE-SUPAERO
#  FAST is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
import numpy as np
from openmdao.core.explicitcomponent import ExplicitComponent


[docs]class ComputeAeroCenter(ExplicitComponent): # TODO: Document equations. Cite sources """ Aerodynamic center estimation """
[docs] def setup(self): self.add_input("data:geometry:wing:MAC:leading_edge:x:local", val=np.nan, units="m") self.add_input("data:geometry:wing:MAC:length", val=np.nan, units="m") self.add_input("data:geometry:wing:root:virtual_chord", val=np.nan, units="m") self.add_input("data:geometry:fuselage:maximum_width", val=np.nan, units="m") self.add_input("data:geometry:fuselage:length", val=np.nan, units="m") self.add_input("data:geometry:wing:MAC:at25percent:x", val=np.nan, units="m") self.add_input("data:geometry:wing:area", val=np.nan, units="m**2") self.add_input("data:geometry:horizontal_tail:area", val=np.nan, units="m**2") self.add_input( "data:geometry:horizontal_tail:MAC:at25percent:x:from_wingMAC25", val=np.nan, units="m" ) self.add_input("data:aerodynamics:aircraft:cruise:CL_alpha", val=np.nan) self.add_input("data:aerodynamics:horizontal_tail:cruise:CL_alpha", val=np.nan) self.add_output("data:aerodynamics:cruise:neutral_point:x")
[docs] def setup_partials(self): self.declare_partials("*", "*", method="fd")
[docs] def compute(self, inputs, outputs): x0_wing = inputs["data:geometry:wing:MAC:leading_edge:x:local"] l0_wing = inputs["data:geometry:wing:MAC:length"] l1_wing = inputs["data:geometry:wing:root:virtual_chord"] width_max = inputs["data:geometry:fuselage:maximum_width"] fa_length = inputs["data:geometry:wing:MAC:at25percent:x"] fus_length = inputs["data:geometry:fuselage:length"] wing_area = inputs["data:geometry:wing:area"] s_h = inputs["data:geometry:horizontal_tail:area"] lp_ht = inputs["data:geometry:horizontal_tail:MAC:at25percent:x:from_wingMAC25"] cl_alpha_wing = inputs["data:aerodynamics:aircraft:cruise:CL_alpha"] cl_alpha_ht = inputs["data:aerodynamics:horizontal_tail:cruise:CL_alpha"] # TODO: make variable name is computation sequence more english x0_25 = fa_length - 0.25 * l0_wing - x0_wing + 0.25 * l1_wing ratio_x025 = x0_25 / fus_length # fitting result of Raymer book, figure 16.14 k_h = 0.01222 - 7.40541e-4 * ratio_x025 * 100 + 2.1956e-5 * (ratio_x025 * 100) ** 2 # equation from Raymer book, eqn 16.22 cm_alpha_fus = k_h * width_max ** 2 * fus_length / (l0_wing * wing_area) * 180.0 / np.pi x_ca_plane = ( cl_alpha_wing * fa_length / l0_wing - cm_alpha_fus + cl_alpha_ht * (1 - 0.4) * 0.9 * s_h / wing_area * (lp_ht + fa_length) / l0_wing ) / (cl_alpha_wing + cl_alpha_ht * (1 - 0.4) * 0.9 * s_h / wing_area) x_aero_center = x_ca_plane - fa_length / l0_wing + 0.25 outputs["data:aerodynamics:cruise:neutral_point:x"] = x_aero_center