Source code for fastoad.models.geometry.geom_components.wing.components.compute_cl_alpha

"""
    Estimation of wing lift coefficient
"""

#  This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
#  Copyright (C) 2021 ONERA & ISAE-SUPAERO
#  FAST is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
import math

import numpy as np
from openmdao.core.explicitcomponent import ExplicitComponent


# TODO: This belongs more to aerodynamics than geometry
[docs]class ComputeCLalpha(ExplicitComponent): # TODO: Document equations. Cite sources """ Wing lift coefficient estimation """
[docs] def setup(self): self.add_input("data:TLAR:cruise_mach", val=np.nan) self.add_input("data:geometry:fuselage:maximum_width", val=np.nan, units="m") self.add_input("data:geometry:fuselage:maximum_height", val=np.nan, units="m") self.add_input("data:geometry:wing:area", val=np.nan, units="m**2") self.add_input("data:geometry:wing:root:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:thickness_ratio", val=np.nan) self.add_input("data:geometry:wing:sweep_25", val=np.nan, units="deg") self.add_input("data:geometry:wing:aspect_ratio", val=np.nan) self.add_input("data:geometry:wing:span", val=np.nan, units="m") self.add_output("data:aerodynamics:aircraft:cruise:CL_alpha")
[docs] def setup_partials(self): self.declare_partials("data:aerodynamics:aircraft:cruise:CL_alpha", "*", method="fd")
[docs] def compute(self, inputs, outputs): cruise_mach = inputs["data:TLAR:cruise_mach"] width_max = inputs["data:geometry:fuselage:maximum_width"] height_max = inputs["data:geometry:fuselage:maximum_height"] span = inputs["data:geometry:wing:span"] lambda_wing = inputs["data:geometry:wing:aspect_ratio"] el_ext = inputs["data:geometry:wing:tip:thickness_ratio"] wing_area = inputs["data:geometry:wing:area"] l2_wing = inputs["data:geometry:wing:root:chord"] l4_wing = inputs["data:geometry:wing:tip:chord"] sweep_25 = inputs["data:geometry:wing:sweep_25"] beta = math.sqrt(1 - cruise_mach ** 2) d_f = math.sqrt(width_max * height_max) fact_f = 1.07 * (1 + d_f / span) ** 2 lambda_wing_eff = lambda_wing * (1 + 1.9 * l4_wing * el_ext / span) cl_alpha_wing = ( 2 * math.pi * lambda_wing_eff / ( 2 + math.sqrt( 4 + lambda_wing_eff ** 2 * beta ** 2 / 0.95 ** 2 * (1 + (math.tan(sweep_25 / 180.0 * math.pi)) ** 2 / beta ** 2) ) ) * (wing_area - l2_wing * width_max) / wing_area * fact_f ) outputs["data:aerodynamics:aircraft:cruise:CL_alpha"] = cl_alpha_wing