Source code for fastoad.models.geometry.geom_components.wing.components.compute_mac_wing

"""
    Estimation of wing mean aerodynamic chord
"""

#  This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
#  Copyright (C) 2021 ONERA & ISAE-SUPAERO
#  FAST is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
import numpy as np
from openmdao.core.explicitcomponent import ExplicitComponent


# TODO: it would be good to have a function to compute MAC for HT, VT and WING
[docs]class ComputeMACWing(ExplicitComponent): # TODO: Document equations. Cite sources """ Wing mean aerodynamic chord estimation """
[docs] def setup(self): self.add_input("data:geometry:wing:area", val=np.nan, units="m**2") self.add_input("data:geometry:wing:kink:leading_edge:x:local", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:leading_edge:x:local", val=np.nan, units="m") self.add_input("data:geometry:wing:root:y", val=np.nan, units="m") self.add_input("data:geometry:wing:kink:y", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:y", val=np.nan, units="m") self.add_input("data:geometry:wing:root:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:kink:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:chord", val=np.nan, units="m") self.add_output("data:geometry:wing:MAC:length", units="m") self.add_output("data:geometry:wing:MAC:leading_edge:x:local", units="m") self.add_output("data:geometry:wing:MAC:y", units="m")
[docs] def setup_partials(self): self.declare_partials( "data:geometry:wing:MAC:length", [ "data:geometry:wing:root:y", "data:geometry:wing:kink:y", "data:geometry:wing:tip:y", "data:geometry:wing:root:chord", "data:geometry:wing:kink:chord", "data:geometry:wing:tip:chord", "data:geometry:wing:area", ], method="fd", ) self.declare_partials( "data:geometry:wing:MAC:leading_edge:x:local", [ "data:geometry:wing:kink:leading_edge:x:local", "data:geometry:wing:tip:leading_edge:x:local", "data:geometry:wing:root:y", "data:geometry:wing:kink:y", "data:geometry:wing:tip:y", "data:geometry:wing:root:chord", "data:geometry:wing:kink:chord", "data:geometry:wing:tip:chord", "data:geometry:wing:area", ], method="fd", ) self.declare_partials( "data:geometry:wing:MAC:y", [ "data:geometry:wing:root:y", "data:geometry:wing:kink:y", "data:geometry:wing:tip:y", "data:geometry:wing:root:chord", "data:geometry:wing:kink:chord", "data:geometry:wing:tip:chord", "data:geometry:wing:area", ], method="fd", )
[docs] def compute(self, inputs, outputs): wing_area = inputs["data:geometry:wing:area"] x3_wing = inputs["data:geometry:wing:kink:leading_edge:x:local"] x4_wing = inputs["data:geometry:wing:tip:leading_edge:x:local"] y2_wing = inputs["data:geometry:wing:root:y"] y3_wing = inputs["data:geometry:wing:kink:y"] y4_wing = inputs["data:geometry:wing:tip:y"] l2_wing = inputs["data:geometry:wing:root:chord"] l3_wing = inputs["data:geometry:wing:kink:chord"] l4_wing = inputs["data:geometry:wing:tip:chord"] l0_wing = ( 3 * y2_wing * l2_wing ** 2 + (y3_wing - y2_wing) * (l2_wing ** 2 + l3_wing ** 2 + l2_wing * l3_wing) + (y4_wing - y3_wing) * (l3_wing ** 2 + l4_wing ** 2 + l3_wing * l4_wing) ) * (2 / (3 * wing_area)) x0_wing = ( x3_wing * ( (y3_wing - y2_wing) * (2 * l3_wing + l2_wing) + (y4_wing - y3_wing) * (2 * l3_wing + l4_wing) ) + x4_wing * (y4_wing - y3_wing) * (2 * l4_wing + l3_wing) ) / (3 * wing_area) y0_wing = ( 3 * y2_wing ** 2 * l2_wing + (y3_wing - y2_wing) * (l3_wing * (y2_wing + 2 * y3_wing) + l2_wing * (y3_wing + 2 * y2_wing)) + (y4_wing - y3_wing) * (l4_wing * (y3_wing + 2 * y4_wing) + l3_wing * (y4_wing + 2 * y3_wing)) ) / (3 * wing_area) outputs["data:geometry:wing:MAC:length"] = l0_wing outputs["data:geometry:wing:MAC:leading_edge:x:local"] = x0_wing outputs["data:geometry:wing:MAC:y"] = y0_wing