Source code for fastoad.models.handling_qualities.tail_sizing.compute_vt_area

"""
Estimation of vertical tail area
"""
#  This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
#  Copyright (C) 2021 ONERA & ISAE-SUPAERO
#  FAST is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.

import numpy as np
import openmdao.api as om


[docs]class ComputeVTArea(om.ExplicitComponent): """ Computes area of vertical tail plane Area is computed to fulfill lateral stability requirement (with the most aft CG) as stated in :cite:raymer:1992. """
[docs] def setup(self): self.add_input("data:TLAR:cruise_mach", val=np.nan) self.add_input("data:weight:aircraft:CG:aft:MAC_position", val=np.nan) self.add_input("data:aerodynamics:fuselage:cruise:CnBeta", val=np.nan) self.add_input("data:aerodynamics:vertical_tail:cruise:CL_alpha", val=np.nan) self.add_input("data:geometry:wing:MAC:length", val=np.nan, units="m") self.add_input("data:geometry:wing:area", val=np.nan, units="m**2") self.add_input("data:geometry:wing:span", val=np.nan, units="m") self.add_input( "data:geometry:vertical_tail:MAC:at25percent:x:from_wingMAC25", val=np.nan, units="m" ) self.add_output("data:geometry:vertical_tail:wetted_area", units="m**2", ref=100.0) self.add_output("data:geometry:vertical_tail:area", units="m**2", ref=50.0) self.add_output("data:aerodynamics:vertical_tail:cruise:CnBeta", units="m**2")
[docs] def setup_partials(self): self.declare_partials("data:geometry:vertical_tail:wetted_area", "*", method="fd") self.declare_partials("data:geometry:vertical_tail:area", "*", method="fd") self.declare_partials("data:aerodynamics:vertical_tail:cruise:CnBeta", "*", method="fd")
[docs] def compute(self, inputs, outputs, discrete_inputs=None, discrete_outputs=None): # pylint: disable=too-many-locals # needed for clarity wing_area = inputs["data:geometry:wing:area"] span = inputs["data:geometry:wing:span"] l0_wing = inputs["data:geometry:wing:MAC:length"] cg_mac_position = inputs["data:weight:aircraft:CG:aft:MAC_position"] cn_beta_fuselage = inputs["data:aerodynamics:fuselage:cruise:CnBeta"] cl_alpha_vt = inputs["data:aerodynamics:vertical_tail:cruise:CL_alpha"] cruise_mach = inputs["data:TLAR:cruise_mach"] # This one is the distance between the 25% MAC points wing_htp_distance = inputs["data:geometry:vertical_tail:MAC:at25percent:x:from_wingMAC25"] # Matches suggested goal by Raymer, Fig 16.20 cn_beta_goal = 0.0569 - 0.01694 * cruise_mach + 0.15904 * cruise_mach ** 2 required_cnbeta_vtp = cn_beta_goal - cn_beta_fuselage distance_to_cg = wing_htp_distance + 0.25 * l0_wing - cg_mac_position * l0_wing vt_area = required_cnbeta_vtp / (distance_to_cg / wing_area / span * cl_alpha_vt) wet_vt_area = 2.1 * vt_area outputs["data:geometry:vertical_tail:wetted_area"] = wet_vt_area outputs["data:geometry:vertical_tail:area"] = vt_area outputs["data:aerodynamics:vertical_tail:cruise:CnBeta"] = required_cnbeta_vtp