Source code for fastoad.models.weight.cg.cg_components.compute_cg_wing

"""
    Estimation of wing center of gravity
"""

#  This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
#  Copyright (C) 2021 ONERA & ISAE-SUPAERO
#  FAST is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
import numpy as np
from openmdao.core.explicitcomponent import ExplicitComponent


[docs]class ComputeWingCG(ExplicitComponent): # TODO: Document equations. Cite sources """ Wing center of gravity estimation """
[docs] def setup(self): self.add_input("data:geometry:wing:kink:span_ratio", val=np.nan) self.add_input("data:geometry:wing:spar_ratio:front:root", val=np.nan) self.add_input("data:geometry:wing:spar_ratio:front:kink", val=np.nan) self.add_input("data:geometry:wing:spar_ratio:front:tip", val=np.nan) self.add_input("data:geometry:wing:spar_ratio:rear:root", val=np.nan) self.add_input("data:geometry:wing:spar_ratio:rear:kink", val=np.nan) self.add_input("data:geometry:wing:spar_ratio:rear:tip", val=np.nan) self.add_input("data:geometry:wing:span", val=np.nan, units="m") self.add_input("data:geometry:wing:MAC:leading_edge:x:local", val=np.nan, units="m") self.add_input("data:geometry:wing:root:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:kink:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:chord", val=np.nan, units="m") self.add_input("data:geometry:wing:root:y", val=np.nan, units="m") self.add_input("data:geometry:wing:kink:leading_edge:x:local", val=np.nan, units="m") self.add_input("data:geometry:wing:kink:y", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:leading_edge:x:local", val=np.nan, units="m") self.add_input("data:geometry:wing:tip:y", val=np.nan, units="m") self.add_input("data:geometry:wing:MAC:at25percent:x", val=np.nan, units="m") self.add_output("data:weight:airframe:wing:CG:x", units="m")
[docs] def setup_partials(self): self.declare_partials("data:weight:airframe:wing:CG:x", "*", method="fd")
[docs] def compute(self, inputs, outputs): wing_break = inputs["data:geometry:wing:kink:span_ratio"] front_spar_ratio_root = inputs["data:geometry:wing:spar_ratio:front:root"] front_spar_ratio_middle = inputs["data:geometry:wing:spar_ratio:front:kink"] front_spar_ratio_tip = inputs["data:geometry:wing:spar_ratio:front:tip"] rear_spar_ratio_root = inputs["data:geometry:wing:spar_ratio:rear:root"] rear_spar_ratio_middle = inputs["data:geometry:wing:spar_ratio:rear:kink"] rear_spar_ratio_tip = inputs["data:geometry:wing:spar_ratio:rear:tip"] span = inputs["data:geometry:wing:span"] x0_wing = inputs["data:geometry:wing:MAC:leading_edge:x:local"] l2_wing = inputs["data:geometry:wing:root:chord"] l3_wing = inputs["data:geometry:wing:kink:chord"] l4_wing = inputs["data:geometry:wing:tip:chord"] y2_wing = inputs["data:geometry:wing:root:y"] x3_wing = inputs["data:geometry:wing:kink:leading_edge:x:local"] y3_wing = inputs["data:geometry:wing:kink:y"] y4_wing = inputs["data:geometry:wing:tip:y"] x4_wing = inputs["data:geometry:wing:tip:leading_edge:x:local"] fa_length = inputs["data:geometry:wing:MAC:at25percent:x"] # TODO: make this constant an option if wing_break >= 0.35: y_cg = span / 2 * 0.35 l_cg = (y3_wing - y_cg) / (y3_wing - y2_wing) * (l2_wing - l3_wing) + l3_wing front_spar_cg = (y3_wing - y_cg) / (y3_wing - y2_wing) * ( l2_wing * front_spar_ratio_root - l3_wing * front_spar_ratio_middle ) + l3_wing * front_spar_ratio_middle rear_spar_cg = (y3_wing - y_cg) / (y3_wing - y2_wing) * ( l2_wing * rear_spar_ratio_root - l3_wing * rear_spar_ratio_middle ) + l3_wing * rear_spar_ratio_middle x_cg = ( (y_cg - y2_wing) / (y3_wing - y2_wing) * x3_wing + front_spar_cg + (l_cg - front_spar_cg - rear_spar_cg) * 0.7 ) elif wing_break < 0.35: y_cg = span / 2 * 0.35 l_cg = (y4_wing - y_cg) / (y4_wing - y3_wing) * (l3_wing - l4_wing) + l4_wing front_spar_cg = (y4_wing - y_cg) / (y4_wing - y3_wing) * ( l3_wing * front_spar_ratio_middle - l4_wing * front_spar_ratio_tip ) + l4_wing * front_spar_ratio_tip rear_spar_cg = (y4_wing - y_cg) / (y4_wing - y3_wing) * ( l3_wing * rear_spar_ratio_middle - l4_wing * rear_spar_ratio_tip ) + l4_wing * rear_spar_ratio_tip x_cg = ( (y_cg - y3_wing) / (y4_wing - y3_wing) * x4_wing + front_spar_cg + (l_cg - front_spar_cg - rear_spar_cg) * 0.7 ) x_cg_absolute = fa_length - 0.25 * x0_wing + (x_cg - x0_wing) outputs["data:weight:airframe:wing:CG:x"] = x_cg_absolute