Source code for fastoad.models.weight.mass_breakdown.cs25

"""
Computation of load cases
"""
#  This file is part of FAST-OAD : A framework for rapid Overall Aircraft Design
#  Copyright (C) 2021 ONERA & ISAE-SUPAERO
#  FAST is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.

import numpy as np
from openmdao.core.explicitcomponent import ExplicitComponent

from fastoad.model_base import Atmosphere


[docs]class Loads(ExplicitComponent): """ Computes gust load cases Load case 1: with wings with almost no fuel Load case 2: at maximum take-off weight Based on formulas in :cite:`supaero:2014`, ยง6.3 """
[docs] def setup(self): self.add_input("data:geometry:wing:area", val=np.nan, units="m**2") self.add_input("data:geometry:wing:span", val=np.nan, units="m") self.add_input("data:weight:aircraft:MZFW", val=np.nan, units="kg") self.add_input("data:weight:aircraft:MFW", val=np.nan, units="kg") self.add_input("data:weight:aircraft:MTOW", val=np.nan, units="kg") self.add_input("data:aerodynamics:aircraft:cruise:CL_alpha", val=np.nan) self.add_input("data:load_case:lc1:U_gust", val=np.nan, units="m/s") self.add_input("data:load_case:lc1:altitude", val=np.nan, units="ft") self.add_input("data:load_case:lc1:Vc_EAS", val=np.nan, units="m/s") self.add_input("data:load_case:lc2:U_gust", val=np.nan, units="m/s") self.add_input("data:load_case:lc2:altitude", val=np.nan, units="ft") self.add_input("data:load_case:lc2:Vc_EAS", val=np.nan, units="kn") self.add_output("data:mission:sizing:cs25:sizing_load_1", units="kg") self.add_output("data:mission:sizing:cs25:sizing_load_2", units="kg")
[docs] def setup_partials(self): self.declare_partials("*", "*", method="fd")
# pylint: disable=too-many-locals # pylint: disable=invalid-name
[docs] def compute(self, inputs, outputs, discrete_inputs=None, discrete_outputs=None): sea_level_density = Atmosphere(0).density wing_area = inputs["data:geometry:wing:area"] span = inputs["data:geometry:wing:span"] mzfw = inputs["data:weight:aircraft:MZFW"] mfw = inputs["data:weight:aircraft:MFW"] mtow = inputs["data:weight:aircraft:MTOW"] cl_alpha = inputs["data:aerodynamics:aircraft:cruise:CL_alpha"] u_gust1 = inputs["data:load_case:lc1:U_gust"] alt_1 = inputs["data:load_case:lc1:altitude"] vc_eas1 = inputs["data:load_case:lc1:Vc_EAS"] u_gust2 = inputs["data:load_case:lc2:U_gust"] alt_2 = inputs["data:load_case:lc2:altitude"] vc_eas2 = inputs["data:load_case:lc2:Vc_EAS"] # calculation of mean geometric chord chord_geom = wing_area / span # load case #1 m1 = 1.05 * mzfw n_gust_1 = self.__n_gust( m1, wing_area, Atmosphere(alt_1).density, sea_level_density, chord_geom, vc_eas1, cl_alpha, u_gust1, ) n1 = 1.5 * max(2.5, n_gust_1) n1m1 = n1 * m1 # load case #2 n_gust_2 = self.__n_gust( mtow, wing_area, Atmosphere(alt_2).density, sea_level_density, chord_geom, vc_eas2, cl_alpha, u_gust2, ) n2 = 1.5 * max(2.5, n_gust_2) mcv = min(0.8 * mfw, mtow - mzfw) n2m2 = n2 * (mtow - 0.55 * mcv) outputs["data:mission:sizing:cs25:sizing_load_1"] = n1m1 outputs["data:mission:sizing:cs25:sizing_load_2"] = n2m2
@staticmethod def __n_gust(mass, wing_area, rho, sea_level_density, chord_geom, vc_eas, cl_alpha, u_gust): """ Computes a reference gust load. :param mass: :param wing_area: :param rho: :param sea_level_density: :param chord_geom: :param vc_eas: Vc (Equivalent AirSpeed) :param cl_alpha: :param u_gust: :return: """ mu_g = 2 * mass / rho / wing_area / chord_geom / cl_alpha k_g = 0.88 * mu_g / (5.3 + mu_g) # attenuation factor n_gust = 1 + (sea_level_density / 2 / 9.81) * k_g * u_gust * ( vc_eas * cl_alpha / mass / wing_area ) return n_gust